Engineering the Spectrum of Dipole Field-Localized Spin-Wave Modes to Enable Spin-Torque Antidamping

Auto-oscillation of a ferromagnet due to spin-orbit torques in response to a dc current is of wide interest as a flexible mechanism for generating controllable high-frequency magnetic dynamics. However, degeneracies of the spin-wave modes and nonlinear magnon-magnon scattering impede coherent preces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review applied 2017-05, Vol.7 (5)
Hauptverfasser: Zhang, Chi, Pu, Yong, Manuilov, Sergei A., White, Shane P., Page, Michael R., Blomberg, Erick C., Pelekhov, Denis V., Hammel, P. Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Auto-oscillation of a ferromagnet due to spin-orbit torques in response to a dc current is of wide interest as a flexible mechanism for generating controllable high-frequency magnetic dynamics. However, degeneracies of the spin-wave modes and nonlinear magnon-magnon scattering impede coherent precession. Discretization of the spin-wave modes can reduce this scattering. Furthermore, spatial localization of the spin-wave modes by the strongly inhomogeneous dipole magnetic field of a nearby spherical micromagnet provides variable spatial confinement, thus offering the option of systematic tunability of magnon spectrum for studying multimode interactions. Here we demonstrate that field localization generates a discrete spin-wave spectrum observable as a series of well-resolved localized modes in the presence of imposed spin currents arising from the spin Hall effect in a permalloy-platinum (Py/Pt) microstrip. The observation of linewidth reduction through damping control in this micromagnetically engineered spectrum demonstrates that localized modes can be controlled efficiently, an important step toward continuously tunable spin Hall effect–driven auto-oscillators.
ISSN:2331-7019
2331-7019