Triple differential cross sections for electron-impact ionization of methane at intermediate energy

We report an experimental and theoretical investigation of electron-impact single ionization of the highest occupied molecular orbital 1t2 and the next highest occupied molecular orbital 2a1 states of CH4 at an incident electron energy of 250 eV. Triple differential cross sections measured in two di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2019-05, Vol.150 (19)
Hauptverfasser: Ali, Esam, Granados, Carlos, Sakaamini, Ahmad, Harvey, Matthew, Ancarani, Lorenzo Ugo, Murray, Andrew James, Dogan, Mevlut, Ning, Chuangang, Colgan, James Patrick, Madison, Don
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report an experimental and theoretical investigation of electron-impact single ionization of the highest occupied molecular orbital 1t2 and the next highest occupied molecular orbital 2a1 states of CH4 at an incident electron energy of 250 eV. Triple differential cross sections measured in two different laboratories were compared with results calculated within the molecular 3-body distorted wave and generalized Sturmian function theoretical models. For ionization of the 1t2 state, the binary peak was observed to have a single maximum near the momentum transfer direction that evolved into a double peak for increasing projectile scattering angles, as has been seen for ionization of atomic p-states. A detailed investigation of this evolution was performed. As expected because of its s-type character, for ionization of the 2a1 state, only a single binary peak was observed. Altogether, good agreement was found between experiment and theory.
ISSN:0021-9606
1089-7690