The modeling of delayed-onset Rayleigh-Taylor and transition to mixing in laser-driven HED experiments

In this paper, we discuss simulations, along with a benchmarking experiment, performed using the xRAGE code which demonstrate the ability of a laser model to predict laser-driven, high-energy-density shock hydrodynamics with good fidelity. This directly contributes to our ability to model hydrodynam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2019-05, Vol.26 (5)
Hauptverfasser: Di Stefano, Carlos A., Doss, Forrest William, Rasmus, Alexander Martin, Flippo, Kirk Adler, Haines, Brian Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Physics of plasmas
container_volume 26
creator Di Stefano, Carlos A.
Doss, Forrest William
Rasmus, Alexander Martin
Flippo, Kirk Adler
Haines, Brian Michael
description In this paper, we discuss simulations, along with a benchmarking experiment, performed using the xRAGE code which demonstrate the ability of a laser model to predict laser-driven, high-energy-density shock hydrodynamics with good fidelity. This directly contributes to our ability to model hydrodynamic-instability dynamics produced by a laser drive typical of those available at OMEGA, OMEGA-EP, NIF, and similar facilities. In particular, we show how the laser model is essential for predicting deceleration-phase Rayleigh-Taylor arising from laser turn-off. We do this using the experimental case of a seeded single-mode perturbation. Then, we turn to a seeded multimode perturbation to show how the above result permits us to access the modeling of hydrodynamic mixing, a topic of interest for future work.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1532711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1532711</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_15327113</originalsourceid><addsrcrecordid>eNqNy7sKwkAQheFFFIyXdxjsFzYmJlprxFpS2IUlmZiRZFZ2FtG3V8EHsDpfcf6RimKz3ek8y9Px17nRWZZepmomcjPGpNlmG6m27BAG12BPfAXXwkf2hY12LBjgbF890rXT5QfOg-UGgrcsFMgxBAcDPb8lMfRW0OvG0wMZTsUB8HlHTwNykIWatLYXXP52rlbHotyftJNAldQUsO5qx4x1qOJNss7jOPnr9AZ2WEh9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The modeling of delayed-onset Rayleigh-Taylor and transition to mixing in laser-driven HED experiments</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Di Stefano, Carlos A. ; Doss, Forrest William ; Rasmus, Alexander Martin ; Flippo, Kirk Adler ; Haines, Brian Michael</creator><creatorcontrib>Di Stefano, Carlos A. ; Doss, Forrest William ; Rasmus, Alexander Martin ; Flippo, Kirk Adler ; Haines, Brian Michael ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>In this paper, we discuss simulations, along with a benchmarking experiment, performed using the xRAGE code which demonstrate the ability of a laser model to predict laser-driven, high-energy-density shock hydrodynamics with good fidelity. This directly contributes to our ability to model hydrodynamic-instability dynamics produced by a laser drive typical of those available at OMEGA, OMEGA-EP, NIF, and similar facilities. In particular, we show how the laser model is essential for predicting deceleration-phase Rayleigh-Taylor arising from laser turn-off. We do this using the experimental case of a seeded single-mode perturbation. Then, we turn to a seeded multimode perturbation to show how the above result permits us to access the modeling of hydrodynamic mixing, a topic of interest for future work.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><ispartof>Physics of plasmas, 2019-05, Vol.26 (5)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000238897074 ; 0000000307296257 ; 0000000193001034 ; 0000000247525141 ; 0000000161663519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1532711$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Stefano, Carlos A.</creatorcontrib><creatorcontrib>Doss, Forrest William</creatorcontrib><creatorcontrib>Rasmus, Alexander Martin</creatorcontrib><creatorcontrib>Flippo, Kirk Adler</creatorcontrib><creatorcontrib>Haines, Brian Michael</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>The modeling of delayed-onset Rayleigh-Taylor and transition to mixing in laser-driven HED experiments</title><title>Physics of plasmas</title><description>In this paper, we discuss simulations, along with a benchmarking experiment, performed using the xRAGE code which demonstrate the ability of a laser model to predict laser-driven, high-energy-density shock hydrodynamics with good fidelity. This directly contributes to our ability to model hydrodynamic-instability dynamics produced by a laser drive typical of those available at OMEGA, OMEGA-EP, NIF, and similar facilities. In particular, we show how the laser model is essential for predicting deceleration-phase Rayleigh-Taylor arising from laser turn-off. We do this using the experimental case of a seeded single-mode perturbation. Then, we turn to a seeded multimode perturbation to show how the above result permits us to access the modeling of hydrodynamic mixing, a topic of interest for future work.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNy7sKwkAQheFFFIyXdxjsFzYmJlprxFpS2IUlmZiRZFZ2FtG3V8EHsDpfcf6RimKz3ek8y9Px17nRWZZepmomcjPGpNlmG6m27BAG12BPfAXXwkf2hY12LBjgbF890rXT5QfOg-UGgrcsFMgxBAcDPb8lMfRW0OvG0wMZTsUB8HlHTwNykIWatLYXXP52rlbHotyftJNAldQUsO5qx4x1qOJNss7jOPnr9AZ2WEh9</recordid><startdate>20190529</startdate><enddate>20190529</enddate><creator>Di Stefano, Carlos A.</creator><creator>Doss, Forrest William</creator><creator>Rasmus, Alexander Martin</creator><creator>Flippo, Kirk Adler</creator><creator>Haines, Brian Michael</creator><general>American Institute of Physics (AIP)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000238897074</orcidid><orcidid>https://orcid.org/0000000307296257</orcidid><orcidid>https://orcid.org/0000000193001034</orcidid><orcidid>https://orcid.org/0000000247525141</orcidid><orcidid>https://orcid.org/0000000161663519</orcidid></search><sort><creationdate>20190529</creationdate><title>The modeling of delayed-onset Rayleigh-Taylor and transition to mixing in laser-driven HED experiments</title><author>Di Stefano, Carlos A. ; Doss, Forrest William ; Rasmus, Alexander Martin ; Flippo, Kirk Adler ; Haines, Brian Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_15327113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Stefano, Carlos A.</creatorcontrib><creatorcontrib>Doss, Forrest William</creatorcontrib><creatorcontrib>Rasmus, Alexander Martin</creatorcontrib><creatorcontrib>Flippo, Kirk Adler</creatorcontrib><creatorcontrib>Haines, Brian Michael</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Stefano, Carlos A.</au><au>Doss, Forrest William</au><au>Rasmus, Alexander Martin</au><au>Flippo, Kirk Adler</au><au>Haines, Brian Michael</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The modeling of delayed-onset Rayleigh-Taylor and transition to mixing in laser-driven HED experiments</atitle><jtitle>Physics of plasmas</jtitle><date>2019-05-29</date><risdate>2019</risdate><volume>26</volume><issue>5</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><abstract>In this paper, we discuss simulations, along with a benchmarking experiment, performed using the xRAGE code which demonstrate the ability of a laser model to predict laser-driven, high-energy-density shock hydrodynamics with good fidelity. This directly contributes to our ability to model hydrodynamic-instability dynamics produced by a laser drive typical of those available at OMEGA, OMEGA-EP, NIF, and similar facilities. In particular, we show how the laser model is essential for predicting deceleration-phase Rayleigh-Taylor arising from laser turn-off. We do this using the experimental case of a seeded single-mode perturbation. Then, we turn to a seeded multimode perturbation to show how the above result permits us to access the modeling of hydrodynamic mixing, a topic of interest for future work.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><orcidid>https://orcid.org/0000000238897074</orcidid><orcidid>https://orcid.org/0000000307296257</orcidid><orcidid>https://orcid.org/0000000193001034</orcidid><orcidid>https://orcid.org/0000000247525141</orcidid><orcidid>https://orcid.org/0000000161663519</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2019-05, Vol.26 (5)
issn 1070-664X
1089-7674
language eng
recordid cdi_osti_scitechconnect_1532711
source AIP Journals Complete; Alma/SFX Local Collection
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
title The modeling of delayed-onset Rayleigh-Taylor and transition to mixing in laser-driven HED experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A46%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20modeling%20of%20delayed-onset%20Rayleigh-Taylor%20and%20transition%20to%20mixing%20in%20laser-driven%20HED%20experiments&rft.jtitle=Physics%20of%20plasmas&rft.au=Di%20Stefano,%20Carlos%20A.&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2019-05-29&rft.volume=26&rft.issue=5&rft.issn=1070-664X&rft.eissn=1089-7674&rft_id=info:doi/&rft_dat=%3Costi%3E1532711%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true