The modeling of delayed-onset Rayleigh-Taylor and transition to mixing in laser-driven HED experiments
In this paper, we discuss simulations, along with a benchmarking experiment, performed using the xRAGE code which demonstrate the ability of a laser model to predict laser-driven, high-energy-density shock hydrodynamics with good fidelity. This directly contributes to our ability to model hydrodynam...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2019-05, Vol.26 (5) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we discuss simulations, along with a benchmarking experiment, performed using the xRAGE code which demonstrate the ability of a laser model to predict laser-driven, high-energy-density shock hydrodynamics with good fidelity. This directly contributes to our ability to model hydrodynamic-instability dynamics produced by a laser drive typical of those available at OMEGA, OMEGA-EP, NIF, and similar facilities. In particular, we show how the laser model is essential for predicting deceleration-phase Rayleigh-Taylor arising from laser turn-off. We do this using the experimental case of a seeded single-mode perturbation. Then, we turn to a seeded multimode perturbation to show how the above result permits us to access the modeling of hydrodynamic mixing, a topic of interest for future work. |
---|---|
ISSN: | 1070-664X 1089-7674 |