Shaping effects on toroidal magnetohydrodynamic modes in the presence of plasma and wall resistivity

This study explores the effects of plasma shaping on magnetohydrodynamic mode stability and rotational stabilization in a tokamak, including both plasma and wall resistivity. Depending upon the plasma shape, safety factor, and distance from the wall, the β-limit for rotational stabilization is given...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2018-01, Vol.25 (1)
Hauptverfasser: Rhodes, Dov J., Cole, A. J., Brennan, D. P., Finn, J. M., Li, M., Fitzpatrick, R., Mauel, M. E., Navratil, G. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study explores the effects of plasma shaping on magnetohydrodynamic mode stability and rotational stabilization in a tokamak, including both plasma and wall resistivity. Depending upon the plasma shape, safety factor, and distance from the wall, the β-limit for rotational stabilization is given by either the resistive-plasma ideal-wall (tearing mode) limit or the ideal-plasma resistive-wall (resistive wall mode) limit. In order to explore this broad parameter space, a sharp-boundary model is developed with a realistic geometry, resonant tearing surfaces, and a resistive wall. The β-limit achievable in the presence of stabilization by rigid plasma rotation, or by an equivalent feedback control with imaginary normal-field gain, is shown to peak at specific values of elongation and triangularity. As a result, it is shown that the optimal shaping with rotation typically coincides with transitions between tearing-dominated and wall-dominated mode behavior
ISSN:1070-664X