Lithium-Doping Stabilized High-Performance P2–Na0.66Li0.18Fe0.12Mn0.7O2 Cathode for Sodium Ion Batteries
While sodium-ion batteries (SIBs) hold great promise for large-scale electric energy storage and low speed electric vehicles, the poor capacity retention of the cathode is one of the bottlenecks in the development of SIBs. Following a strategy of using lithium doping in the transition-metal layer to...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2019-04, Vol.141 (16), p.6680-6689 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | While sodium-ion batteries (SIBs) hold great promise for large-scale electric energy storage and low speed electric vehicles, the poor capacity retention of the cathode is one of the bottlenecks in the development of SIBs. Following a strategy of using lithium doping in the transition-metal layer to stabilize the desodiated structure, we have designed and successfully synthesized a novel layered oxide cathode P2–Na0.66Li0.18Fe0.12Mn0.7O2, which demonstrated a high capacity of 190 mAh g–1 and a remarkably high capacity retention of ∼87% after 80 cycles within a wide voltage range of 1.5–4.5 V. The outstanding stability is attributed to the reversible migration of lithium during cycling and the elimination of the detrimental P2–O2 phase transition, revealed by ex situ and in situ X-ray diffraction and solid-state nuclear magnetic resonance spectroscopy. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.9b01855 |