Enhanced Hybridization Sets the Stage for Electronic Nematicity in CeRhIn5

High magnetic fields induce a pronounced in-plane electronic anisotropy in the tetragonal antiferromagnetic metal CeRhIn5 at H* ≳ 30 T for fields ≃20° off the $c$ axis. Here in this paper, we investigate the response of the underlying crystal lattice in magnetic fields to 45 T via high-resolution di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2019-01, Vol.122 (1)
Hauptverfasser: Rosa, Priscila Ferrari Silveira, Thomas, Sean Michael, Balakirev, Fedor Fedorovich, Bauer, Eric Dietzgen, Fernandes, Rafael M., Thompson, Joe David, Ronning, Filip, Jaime, Marcelo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High magnetic fields induce a pronounced in-plane electronic anisotropy in the tetragonal antiferromagnetic metal CeRhIn5 at H* ≳ 30 T for fields ≃20° off the $c$ axis. Here in this paper, we investigate the response of the underlying crystal lattice in magnetic fields to 45 T via high-resolution dilatometry. At low fields, a finite magnetic field component in the tetragonal $ab$ plane explicitly breaks the tetragonal (C4) symmetry of the lattice revealing a finite nematic susceptibility. A modest a-axis expansion at H * hence marks the crossover to a fluctuating nematic phase with large nematic susceptibility. Magnetostriction quantum oscillations confirm a Fermi surface change at H * with the emergence of new orbits. By analyzing the field-induced change in the crystal-field ground state, we conclude that the in-plane Ce $f$ hybridization is enhanced at H * , in agreement with the in-plane lattice expansion. We argue that the nematic behavior observed in this prototypical heavy-fermion material is of electronic origin, and is driven by the hybridization between 4$f$ and conduction electrons which carries the $f$-electron anisotropy to the Fermi surface.
ISSN:0031-9007
DOI:10.1103/PhysRevLett.122.016402