Biasing Smarter, Not Harder, by Partitioning Collective Variables into Families in Parallel Bias Metadynamics

Molecular simulations of systems with multiple copies of identical atoms or molecules may require the biasing of numerous, degenerate collective variables (CVs) to accelerate sampling. Recently, a variation of metadynamics (MetaD) named parallel bias metadynamics (PBMetaD) has been shown to make bia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2018-10, Vol.14 (10), p.4985-4990
Hauptverfasser: Prakash, Arushi, Fu, Christopher D, Bonomi, Massimiliano, Pfaendtner, Jim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molecular simulations of systems with multiple copies of identical atoms or molecules may require the biasing of numerous, degenerate collective variables (CVs) to accelerate sampling. Recently, a variation of metadynamics (MetaD) named parallel bias metadynamics (PBMetaD) has been shown to make biasing of many CVs more tractable. We extended the PBMetaD scheme so that it partitions degenerate CVs into families that share the same bias potential, consequently expediting convergence of the free-energy landscape. We tested our method, named parallel bias metadynamics with partitioned families, on 3, 21, and 78 CV systems and obtained an approximately proportional increase in convergence speed compared to standard PBMetaD.
ISSN:1549-9618
1549-9626
DOI:10.1021/acs.jctc.8b00448