A high-speed, high-performance, microfabricated comprehensive two-dimensional gas chromatograph

A small, consumable-free, low-power, ultra-high-speed comprehensive GC×GC system consisting of microfabricated columns, nanoelectromechanical system (NEMS) cantilever resonators for detection, and a valve-based stop-flow modulator is demonstrated. The separation of a highly polar 29-component mixtur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2019-04, Vol.19 (9), p.1633-1643
Hauptverfasser: Whiting, Joshua J, Myers, Edward, Manginell, Ronald P, Moorman, Mathew W, Anderson, John, Fix, Cory S, Washburn, Cody, Staton, Al, Porter, Daniel, Graf, Darin, Wheeler, David R, Howell, Stephen, Richards, John, Monteith, Haley, Achyuthan, Komandoor E, Roukes, Michael, Simonson, Robert J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A small, consumable-free, low-power, ultra-high-speed comprehensive GC×GC system consisting of microfabricated columns, nanoelectromechanical system (NEMS) cantilever resonators for detection, and a valve-based stop-flow modulator is demonstrated. The separation of a highly polar 29-component mixture covering a boiling point range of 46 to 253 °C on a pair of microfabricated columns using a Staiger valve manifold in less than 7 seconds, and just over 4 seconds after the ensemble holdup time is demonstrated with a downstream FID. The analysis time of the second dimension was 160 ms, and peak widths in the second dimension range from 10-60 ms. A peak capacity of just over 300 was calculated for a separation of just over 6 s. Data from a continuous operation testing over 40 days and 20 000 runs of the GC×GC columns with the NEMS resonators using a 4-component test set is presented. The GC×GC-NEMS resonator system generated second-dimension peak widths as narrow as 8 ms with no discernable peak distortion due to under-sampling from the detector.
ISSN:1473-0197
1473-0189
DOI:10.1039/c9lc00027e