Theoretical Evidence of Solvent-Mediated Excited-State Dynamics in a Functionalized Iron Sensitizer

The solvent-mediated excited-state dynamics of the COOH-functionalized Fe-carbene photosensitizer [Fe­(bmicp)2]2+ (bmicp = 2,6-bis­(3-methyl-imidazole-1-ylidine)-4-carboxy-pyridine) is studied by time-dependent density functional theory, as well as classical and quantum dynamics simulations. We demo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2019-01, Vol.123 (4), p.2056-2065
Hauptverfasser: Pápai, Mátyás, Abedi, Mostafa, Levi, Gianluca, Biasin, Elisa, Nielsen, Martin M, Møller, Klaus B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The solvent-mediated excited-state dynamics of the COOH-functionalized Fe-carbene photosensitizer [Fe­(bmicp)2]2+ (bmicp = 2,6-bis­(3-methyl-imidazole-1-ylidine)-4-carboxy-pyridine) is studied by time-dependent density functional theory, as well as classical and quantum dynamics simulations. We demonstrate the crucial role of the polar acetonitrile solvent in stabilizing the metal-to-ligand charge transfer (MLCT) states of the investigated molecule using the conductor polarizable continuum model. This leads to dynamics that avoid sub-ps back electron transfer to the metal and an exceptionally long-lived 1MLCT state that does not undergo sub-ps 1MLCT → 3MLCT intersystem crossing as it is energetically isolated. We identify two components of the excited-state solvent reorganization process: an initial rotation (∼300 fs) and diffusional dynamics within the local cage surrounding the rotated solvent molecule (∼2 ps). Finally, it is found that the relaxation of the solvent only slightly affects the excited-state population dynamics of [Fe­(bmicp)2]2+.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.8b10768