Hybrid Charge-Transfer Semiconductors: (C7H7)SbI4, (C7H7)BiI4, and Their Halide Congeners
Hybrid metal halides yield highly desirable optoelectronic properties and offer significant opportunity due to their solution processability. This contribution reports a new series of hybrid semiconductors, (C7H7)MX4 (M = Bi3+, Sb3+; X = Cl–, Br–, I–), that are composed of edge-sharing MX6 chains s...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2019-05, Vol.58 (9), p.5818-5826 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hybrid metal halides yield highly desirable optoelectronic properties and offer significant opportunity due to their solution processability. This contribution reports a new series of hybrid semiconductors, (C7H7)MX4 (M = Bi3+, Sb3+; X = Cl–, Br–, I–), that are composed of edge-sharing MX6 chains separated in space by π-stacked tropylium (C7H7 +) cations; the inorganic chains resemble the connectivity of BiI3. The Bi3+ compounds have blue-shifted optical absorptions relative to the Sb3+ compounds that span the visible and near-IR region. Consistent with observations, DFT calculations reveal that the conduction band is composed of the tropylium cation and valence band primarily the inorganic chain: a charge-transfer semiconductor. The band gaps for both Bi3+ and Sb3+ compounds decrease systematically as a function of increasing halide size. These compounds are a rare example of charge-transfer semiconductors that also exhibit efficient crystal packing of the organic cations, thus providing an opportunity to study how structural packing affects optoelectronic properties. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.9b00170 |