The nature of molecular cloud material in interplanetary dust
Eight interplanetary dust particles (IDPs) exhibiting a wide range of H and N isotopic anomalies have been studied by transmission electron microscopy, x-ray absorption near-edge structure spectroscopy, and Fourier-transform infrared spectroscopy. These anomalies are believed to have originated duri...
Gespeichert in:
Veröffentlicht in: | Geochimica et cosmochimica acta 2004-06, Vol.68 (11), p.2577-2589 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2589 |
---|---|
container_issue | 11 |
container_start_page | 2577 |
container_title | Geochimica et cosmochimica acta |
container_volume | 68 |
creator | Keller, Lindsay P. Messenger, Scott Flynn, George J. Clemett, Simon Wirick, Sue Jacobsen, Chris |
description | Eight interplanetary dust particles (IDPs) exhibiting a wide range of H and N isotopic anomalies have been studied by transmission electron microscopy, x-ray absorption near-edge structure spectroscopy, and Fourier-transform infrared spectroscopy. These anomalies are believed to have originated during chemical reactions in a cold molecular cloud that was the precursor to the Solar System. The chemical and mineralogical studies reported here thus constitute direct studies of preserved molecular cloud materials. The H and N isotopic anomalies are hosted by different hydrocarbons that reside in the abundant carbonaceous matrix of the IDPs. Infrared measurements constrain the major deuterium (D) host in the D-enriched IDPs to thermally labile aliphatic hydrocarbon groups attached to macromolecular material. Much of the large variation observed in D/H in this suite of IDPs reflects the variable loss of this labile component during atmospheric entry heating. IDPs with elevated
15N/
14N ratios contain N in the form of amine (-NH
2) functional groups that are likely attached to other molecules such as aromatic hydrocarbons. The host of the N isotopic anomalies is not as readily lost during entry heating as the D-rich material. Infrared analysis shows that while the organic matter in primitive anhydrous IDPs is similar to that observed in acid residues of primitive chondritic meteorites, the measured aromatic:aliphatic ratio is markedly lower in the IDPs. |
doi_str_mv | 10.1016/j.gca.2003.10.044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_15015634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016703703008950</els_id><sourcerecordid>17684299</sourcerecordid><originalsourceid>FETCH-LOGICAL-a507t-271b083d6143e7e25ac39666499894322450b98ac339201cf988874b1aea41223</originalsourceid><addsrcrecordid>eNqFkU9rGzEQxUVoIG6SD5DbQqHksu7o30oi9BBM2wQMvThnIWvHtcx65UjaQr59tLjnFASSht88Zt4j5I7CkgLtvh2Wf7xbMgBe_0sQ4oIsqFasNZLzT2QBFWoVcHVFPud8AAAlJSzI980em9GVKWETd80xDuinwaXGD3Hqm6MrmIIbmjDWU9-nwY1YXHpr-imXG3K5c0PG23_3NXn5-WOzemrXv389rx7XrZOgSssU3YLmfUcFR4VMOs9N13XCGG0EZ0xI2Bpdq9wwoH5ntNZKbKlDJyhj_Jp8OevGXILNPhT0ex_HEX2xVAKVHReV-nqmTim-TpiLPYbscZhHjlO2TAsqBDMVvP8QrMZJLRTn9L-aVHW6Ss6a9Az6FHNOuLOnFI7VKEvBzhHZg60R2TmiuVQjqj0P5x6s3v0NmObVcPTYhzRv1sfwQfc75gaVqA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17684299</pqid></control><display><type>article</type><title>The nature of molecular cloud material in interplanetary dust</title><source>Elsevier ScienceDirect Journals</source><creator>Keller, Lindsay P. ; Messenger, Scott ; Flynn, George J. ; Clemett, Simon ; Wirick, Sue ; Jacobsen, Chris</creator><creatorcontrib>Keller, Lindsay P. ; Messenger, Scott ; Flynn, George J. ; Clemett, Simon ; Wirick, Sue ; Jacobsen, Chris ; Brookhaven National Laboratory, National Synchrotron Light Source (US)</creatorcontrib><description>Eight interplanetary dust particles (IDPs) exhibiting a wide range of H and N isotopic anomalies have been studied by transmission electron microscopy, x-ray absorption near-edge structure spectroscopy, and Fourier-transform infrared spectroscopy. These anomalies are believed to have originated during chemical reactions in a cold molecular cloud that was the precursor to the Solar System. The chemical and mineralogical studies reported here thus constitute direct studies of preserved molecular cloud materials. The H and N isotopic anomalies are hosted by different hydrocarbons that reside in the abundant carbonaceous matrix of the IDPs. Infrared measurements constrain the major deuterium (D) host in the D-enriched IDPs to thermally labile aliphatic hydrocarbon groups attached to macromolecular material. Much of the large variation observed in D/H in this suite of IDPs reflects the variable loss of this labile component during atmospheric entry heating. IDPs with elevated
15N/
14N ratios contain N in the form of amine (-NH
2) functional groups that are likely attached to other molecules such as aromatic hydrocarbons. The host of the N isotopic anomalies is not as readily lost during entry heating as the D-rich material. Infrared analysis shows that while the organic matter in primitive anhydrous IDPs is similar to that observed in acid residues of primitive chondritic meteorites, the measured aromatic:aliphatic ratio is markedly lower in the IDPs.</description><identifier>ISSN: 0016-7037</identifier><identifier>EISSN: 1872-9533</identifier><identifier>DOI: 10.1016/j.gca.2003.10.044</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CLOUDS ; DUSTS ; INTERPLANETARY SPACE ; NATIONAL SYNCHROTRON LIGHT SOURCE</subject><ispartof>Geochimica et cosmochimica acta, 2004-06, Vol.68 (11), p.2577-2589</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a507t-271b083d6143e7e25ac39666499894322450b98ac339201cf988874b1aea41223</citedby><cites>FETCH-LOGICAL-a507t-271b083d6143e7e25ac39666499894322450b98ac339201cf988874b1aea41223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016703703008950$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/15015634$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Keller, Lindsay P.</creatorcontrib><creatorcontrib>Messenger, Scott</creatorcontrib><creatorcontrib>Flynn, George J.</creatorcontrib><creatorcontrib>Clemett, Simon</creatorcontrib><creatorcontrib>Wirick, Sue</creatorcontrib><creatorcontrib>Jacobsen, Chris</creatorcontrib><creatorcontrib>Brookhaven National Laboratory, National Synchrotron Light Source (US)</creatorcontrib><title>The nature of molecular cloud material in interplanetary dust</title><title>Geochimica et cosmochimica acta</title><description>Eight interplanetary dust particles (IDPs) exhibiting a wide range of H and N isotopic anomalies have been studied by transmission electron microscopy, x-ray absorption near-edge structure spectroscopy, and Fourier-transform infrared spectroscopy. These anomalies are believed to have originated during chemical reactions in a cold molecular cloud that was the precursor to the Solar System. The chemical and mineralogical studies reported here thus constitute direct studies of preserved molecular cloud materials. The H and N isotopic anomalies are hosted by different hydrocarbons that reside in the abundant carbonaceous matrix of the IDPs. Infrared measurements constrain the major deuterium (D) host in the D-enriched IDPs to thermally labile aliphatic hydrocarbon groups attached to macromolecular material. Much of the large variation observed in D/H in this suite of IDPs reflects the variable loss of this labile component during atmospheric entry heating. IDPs with elevated
15N/
14N ratios contain N in the form of amine (-NH
2) functional groups that are likely attached to other molecules such as aromatic hydrocarbons. The host of the N isotopic anomalies is not as readily lost during entry heating as the D-rich material. Infrared analysis shows that while the organic matter in primitive anhydrous IDPs is similar to that observed in acid residues of primitive chondritic meteorites, the measured aromatic:aliphatic ratio is markedly lower in the IDPs.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CLOUDS</subject><subject>DUSTS</subject><subject>INTERPLANETARY SPACE</subject><subject>NATIONAL SYNCHROTRON LIGHT SOURCE</subject><issn>0016-7037</issn><issn>1872-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkU9rGzEQxUVoIG6SD5DbQqHksu7o30oi9BBM2wQMvThnIWvHtcx65UjaQr59tLjnFASSht88Zt4j5I7CkgLtvh2Wf7xbMgBe_0sQ4oIsqFasNZLzT2QBFWoVcHVFPud8AAAlJSzI980em9GVKWETd80xDuinwaXGD3Hqm6MrmIIbmjDWU9-nwY1YXHpr-imXG3K5c0PG23_3NXn5-WOzemrXv389rx7XrZOgSssU3YLmfUcFR4VMOs9N13XCGG0EZ0xI2Bpdq9wwoH5ntNZKbKlDJyhj_Jp8OevGXILNPhT0ex_HEX2xVAKVHReV-nqmTim-TpiLPYbscZhHjlO2TAsqBDMVvP8QrMZJLRTn9L-aVHW6Ss6a9Az6FHNOuLOnFI7VKEvBzhHZg60R2TmiuVQjqj0P5x6s3v0NmObVcPTYhzRv1sfwQfc75gaVqA</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Keller, Lindsay P.</creator><creator>Messenger, Scott</creator><creator>Flynn, George J.</creator><creator>Clemett, Simon</creator><creator>Wirick, Sue</creator><creator>Jacobsen, Chris</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20040601</creationdate><title>The nature of molecular cloud material in interplanetary dust</title><author>Keller, Lindsay P. ; Messenger, Scott ; Flynn, George J. ; Clemett, Simon ; Wirick, Sue ; Jacobsen, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a507t-271b083d6143e7e25ac39666499894322450b98ac339201cf988874b1aea41223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CLOUDS</topic><topic>DUSTS</topic><topic>INTERPLANETARY SPACE</topic><topic>NATIONAL SYNCHROTRON LIGHT SOURCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keller, Lindsay P.</creatorcontrib><creatorcontrib>Messenger, Scott</creatorcontrib><creatorcontrib>Flynn, George J.</creatorcontrib><creatorcontrib>Clemett, Simon</creatorcontrib><creatorcontrib>Wirick, Sue</creatorcontrib><creatorcontrib>Jacobsen, Chris</creatorcontrib><creatorcontrib>Brookhaven National Laboratory, National Synchrotron Light Source (US)</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Geochimica et cosmochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keller, Lindsay P.</au><au>Messenger, Scott</au><au>Flynn, George J.</au><au>Clemett, Simon</au><au>Wirick, Sue</au><au>Jacobsen, Chris</au><aucorp>Brookhaven National Laboratory, National Synchrotron Light Source (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The nature of molecular cloud material in interplanetary dust</atitle><jtitle>Geochimica et cosmochimica acta</jtitle><date>2004-06-01</date><risdate>2004</risdate><volume>68</volume><issue>11</issue><spage>2577</spage><epage>2589</epage><pages>2577-2589</pages><issn>0016-7037</issn><eissn>1872-9533</eissn><abstract>Eight interplanetary dust particles (IDPs) exhibiting a wide range of H and N isotopic anomalies have been studied by transmission electron microscopy, x-ray absorption near-edge structure spectroscopy, and Fourier-transform infrared spectroscopy. These anomalies are believed to have originated during chemical reactions in a cold molecular cloud that was the precursor to the Solar System. The chemical and mineralogical studies reported here thus constitute direct studies of preserved molecular cloud materials. The H and N isotopic anomalies are hosted by different hydrocarbons that reside in the abundant carbonaceous matrix of the IDPs. Infrared measurements constrain the major deuterium (D) host in the D-enriched IDPs to thermally labile aliphatic hydrocarbon groups attached to macromolecular material. Much of the large variation observed in D/H in this suite of IDPs reflects the variable loss of this labile component during atmospheric entry heating. IDPs with elevated
15N/
14N ratios contain N in the form of amine (-NH
2) functional groups that are likely attached to other molecules such as aromatic hydrocarbons. The host of the N isotopic anomalies is not as readily lost during entry heating as the D-rich material. Infrared analysis shows that while the organic matter in primitive anhydrous IDPs is similar to that observed in acid residues of primitive chondritic meteorites, the measured aromatic:aliphatic ratio is markedly lower in the IDPs.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.gca.2003.10.044</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-7037 |
ispartof | Geochimica et cosmochimica acta, 2004-06, Vol.68 (11), p.2577-2589 |
issn | 0016-7037 1872-9533 |
language | eng |
recordid | cdi_osti_scitechconnect_15015634 |
source | Elsevier ScienceDirect Journals |
subjects | CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS CLOUDS DUSTS INTERPLANETARY SPACE NATIONAL SYNCHROTRON LIGHT SOURCE |
title | The nature of molecular cloud material in interplanetary dust |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A08%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20nature%20of%20molecular%20cloud%20material%20in%20interplanetary%20dust&rft.jtitle=Geochimica%20et%20cosmochimica%20acta&rft.au=Keller,%20Lindsay%20P.&rft.aucorp=Brookhaven%20National%20Laboratory,%20National%20Synchrotron%20Light%20Source%20(US)&rft.date=2004-06-01&rft.volume=68&rft.issue=11&rft.spage=2577&rft.epage=2589&rft.pages=2577-2589&rft.issn=0016-7037&rft.eissn=1872-9533&rft_id=info:doi/10.1016/j.gca.2003.10.044&rft_dat=%3Cproquest_osti_%3E17684299%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17684299&rft_id=info:pmid/&rft_els_id=S0016703703008950&rfr_iscdi=true |