The nature of molecular cloud material in interplanetary dust

Eight interplanetary dust particles (IDPs) exhibiting a wide range of H and N isotopic anomalies have been studied by transmission electron microscopy, x-ray absorption near-edge structure spectroscopy, and Fourier-transform infrared spectroscopy. These anomalies are believed to have originated duri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochimica et cosmochimica acta 2004-06, Vol.68 (11), p.2577-2589
Hauptverfasser: Keller, Lindsay P., Messenger, Scott, Flynn, George J., Clemett, Simon, Wirick, Sue, Jacobsen, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2589
container_issue 11
container_start_page 2577
container_title Geochimica et cosmochimica acta
container_volume 68
creator Keller, Lindsay P.
Messenger, Scott
Flynn, George J.
Clemett, Simon
Wirick, Sue
Jacobsen, Chris
description Eight interplanetary dust particles (IDPs) exhibiting a wide range of H and N isotopic anomalies have been studied by transmission electron microscopy, x-ray absorption near-edge structure spectroscopy, and Fourier-transform infrared spectroscopy. These anomalies are believed to have originated during chemical reactions in a cold molecular cloud that was the precursor to the Solar System. The chemical and mineralogical studies reported here thus constitute direct studies of preserved molecular cloud materials. The H and N isotopic anomalies are hosted by different hydrocarbons that reside in the abundant carbonaceous matrix of the IDPs. Infrared measurements constrain the major deuterium (D) host in the D-enriched IDPs to thermally labile aliphatic hydrocarbon groups attached to macromolecular material. Much of the large variation observed in D/H in this suite of IDPs reflects the variable loss of this labile component during atmospheric entry heating. IDPs with elevated 15N/ 14N ratios contain N in the form of amine (-NH 2) functional groups that are likely attached to other molecules such as aromatic hydrocarbons. The host of the N isotopic anomalies is not as readily lost during entry heating as the D-rich material. Infrared analysis shows that while the organic matter in primitive anhydrous IDPs is similar to that observed in acid residues of primitive chondritic meteorites, the measured aromatic:aliphatic ratio is markedly lower in the IDPs.
doi_str_mv 10.1016/j.gca.2003.10.044
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_15015634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016703703008950</els_id><sourcerecordid>17684299</sourcerecordid><originalsourceid>FETCH-LOGICAL-a507t-271b083d6143e7e25ac39666499894322450b98ac339201cf988874b1aea41223</originalsourceid><addsrcrecordid>eNqFkU9rGzEQxUVoIG6SD5DbQqHksu7o30oi9BBM2wQMvThnIWvHtcx65UjaQr59tLjnFASSht88Zt4j5I7CkgLtvh2Wf7xbMgBe_0sQ4oIsqFasNZLzT2QBFWoVcHVFPud8AAAlJSzI980em9GVKWETd80xDuinwaXGD3Hqm6MrmIIbmjDWU9-nwY1YXHpr-imXG3K5c0PG23_3NXn5-WOzemrXv389rx7XrZOgSssU3YLmfUcFR4VMOs9N13XCGG0EZ0xI2Bpdq9wwoH5ntNZKbKlDJyhj_Jp8OevGXILNPhT0ex_HEX2xVAKVHReV-nqmTim-TpiLPYbscZhHjlO2TAsqBDMVvP8QrMZJLRTn9L-aVHW6Ss6a9Az6FHNOuLOnFI7VKEvBzhHZg60R2TmiuVQjqj0P5x6s3v0NmObVcPTYhzRv1sfwQfc75gaVqA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17684299</pqid></control><display><type>article</type><title>The nature of molecular cloud material in interplanetary dust</title><source>Elsevier ScienceDirect Journals</source><creator>Keller, Lindsay P. ; Messenger, Scott ; Flynn, George J. ; Clemett, Simon ; Wirick, Sue ; Jacobsen, Chris</creator><creatorcontrib>Keller, Lindsay P. ; Messenger, Scott ; Flynn, George J. ; Clemett, Simon ; Wirick, Sue ; Jacobsen, Chris ; Brookhaven National Laboratory, National Synchrotron Light Source (US)</creatorcontrib><description>Eight interplanetary dust particles (IDPs) exhibiting a wide range of H and N isotopic anomalies have been studied by transmission electron microscopy, x-ray absorption near-edge structure spectroscopy, and Fourier-transform infrared spectroscopy. These anomalies are believed to have originated during chemical reactions in a cold molecular cloud that was the precursor to the Solar System. The chemical and mineralogical studies reported here thus constitute direct studies of preserved molecular cloud materials. The H and N isotopic anomalies are hosted by different hydrocarbons that reside in the abundant carbonaceous matrix of the IDPs. Infrared measurements constrain the major deuterium (D) host in the D-enriched IDPs to thermally labile aliphatic hydrocarbon groups attached to macromolecular material. Much of the large variation observed in D/H in this suite of IDPs reflects the variable loss of this labile component during atmospheric entry heating. IDPs with elevated 15N/ 14N ratios contain N in the form of amine (-NH 2) functional groups that are likely attached to other molecules such as aromatic hydrocarbons. The host of the N isotopic anomalies is not as readily lost during entry heating as the D-rich material. Infrared analysis shows that while the organic matter in primitive anhydrous IDPs is similar to that observed in acid residues of primitive chondritic meteorites, the measured aromatic:aliphatic ratio is markedly lower in the IDPs.</description><identifier>ISSN: 0016-7037</identifier><identifier>EISSN: 1872-9533</identifier><identifier>DOI: 10.1016/j.gca.2003.10.044</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CLOUDS ; DUSTS ; INTERPLANETARY SPACE ; NATIONAL SYNCHROTRON LIGHT SOURCE</subject><ispartof>Geochimica et cosmochimica acta, 2004-06, Vol.68 (11), p.2577-2589</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a507t-271b083d6143e7e25ac39666499894322450b98ac339201cf988874b1aea41223</citedby><cites>FETCH-LOGICAL-a507t-271b083d6143e7e25ac39666499894322450b98ac339201cf988874b1aea41223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016703703008950$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/15015634$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Keller, Lindsay P.</creatorcontrib><creatorcontrib>Messenger, Scott</creatorcontrib><creatorcontrib>Flynn, George J.</creatorcontrib><creatorcontrib>Clemett, Simon</creatorcontrib><creatorcontrib>Wirick, Sue</creatorcontrib><creatorcontrib>Jacobsen, Chris</creatorcontrib><creatorcontrib>Brookhaven National Laboratory, National Synchrotron Light Source (US)</creatorcontrib><title>The nature of molecular cloud material in interplanetary dust</title><title>Geochimica et cosmochimica acta</title><description>Eight interplanetary dust particles (IDPs) exhibiting a wide range of H and N isotopic anomalies have been studied by transmission electron microscopy, x-ray absorption near-edge structure spectroscopy, and Fourier-transform infrared spectroscopy. These anomalies are believed to have originated during chemical reactions in a cold molecular cloud that was the precursor to the Solar System. The chemical and mineralogical studies reported here thus constitute direct studies of preserved molecular cloud materials. The H and N isotopic anomalies are hosted by different hydrocarbons that reside in the abundant carbonaceous matrix of the IDPs. Infrared measurements constrain the major deuterium (D) host in the D-enriched IDPs to thermally labile aliphatic hydrocarbon groups attached to macromolecular material. Much of the large variation observed in D/H in this suite of IDPs reflects the variable loss of this labile component during atmospheric entry heating. IDPs with elevated 15N/ 14N ratios contain N in the form of amine (-NH 2) functional groups that are likely attached to other molecules such as aromatic hydrocarbons. The host of the N isotopic anomalies is not as readily lost during entry heating as the D-rich material. Infrared analysis shows that while the organic matter in primitive anhydrous IDPs is similar to that observed in acid residues of primitive chondritic meteorites, the measured aromatic:aliphatic ratio is markedly lower in the IDPs.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CLOUDS</subject><subject>DUSTS</subject><subject>INTERPLANETARY SPACE</subject><subject>NATIONAL SYNCHROTRON LIGHT SOURCE</subject><issn>0016-7037</issn><issn>1872-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkU9rGzEQxUVoIG6SD5DbQqHksu7o30oi9BBM2wQMvThnIWvHtcx65UjaQr59tLjnFASSht88Zt4j5I7CkgLtvh2Wf7xbMgBe_0sQ4oIsqFasNZLzT2QBFWoVcHVFPud8AAAlJSzI980em9GVKWETd80xDuinwaXGD3Hqm6MrmIIbmjDWU9-nwY1YXHpr-imXG3K5c0PG23_3NXn5-WOzemrXv389rx7XrZOgSssU3YLmfUcFR4VMOs9N13XCGG0EZ0xI2Bpdq9wwoH5ntNZKbKlDJyhj_Jp8OevGXILNPhT0ex_HEX2xVAKVHReV-nqmTim-TpiLPYbscZhHjlO2TAsqBDMVvP8QrMZJLRTn9L-aVHW6Ss6a9Az6FHNOuLOnFI7VKEvBzhHZg60R2TmiuVQjqj0P5x6s3v0NmObVcPTYhzRv1sfwQfc75gaVqA</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Keller, Lindsay P.</creator><creator>Messenger, Scott</creator><creator>Flynn, George J.</creator><creator>Clemett, Simon</creator><creator>Wirick, Sue</creator><creator>Jacobsen, Chris</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20040601</creationdate><title>The nature of molecular cloud material in interplanetary dust</title><author>Keller, Lindsay P. ; Messenger, Scott ; Flynn, George J. ; Clemett, Simon ; Wirick, Sue ; Jacobsen, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a507t-271b083d6143e7e25ac39666499894322450b98ac339201cf988874b1aea41223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CLOUDS</topic><topic>DUSTS</topic><topic>INTERPLANETARY SPACE</topic><topic>NATIONAL SYNCHROTRON LIGHT SOURCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keller, Lindsay P.</creatorcontrib><creatorcontrib>Messenger, Scott</creatorcontrib><creatorcontrib>Flynn, George J.</creatorcontrib><creatorcontrib>Clemett, Simon</creatorcontrib><creatorcontrib>Wirick, Sue</creatorcontrib><creatorcontrib>Jacobsen, Chris</creatorcontrib><creatorcontrib>Brookhaven National Laboratory, National Synchrotron Light Source (US)</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Geochimica et cosmochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keller, Lindsay P.</au><au>Messenger, Scott</au><au>Flynn, George J.</au><au>Clemett, Simon</au><au>Wirick, Sue</au><au>Jacobsen, Chris</au><aucorp>Brookhaven National Laboratory, National Synchrotron Light Source (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The nature of molecular cloud material in interplanetary dust</atitle><jtitle>Geochimica et cosmochimica acta</jtitle><date>2004-06-01</date><risdate>2004</risdate><volume>68</volume><issue>11</issue><spage>2577</spage><epage>2589</epage><pages>2577-2589</pages><issn>0016-7037</issn><eissn>1872-9533</eissn><abstract>Eight interplanetary dust particles (IDPs) exhibiting a wide range of H and N isotopic anomalies have been studied by transmission electron microscopy, x-ray absorption near-edge structure spectroscopy, and Fourier-transform infrared spectroscopy. These anomalies are believed to have originated during chemical reactions in a cold molecular cloud that was the precursor to the Solar System. The chemical and mineralogical studies reported here thus constitute direct studies of preserved molecular cloud materials. The H and N isotopic anomalies are hosted by different hydrocarbons that reside in the abundant carbonaceous matrix of the IDPs. Infrared measurements constrain the major deuterium (D) host in the D-enriched IDPs to thermally labile aliphatic hydrocarbon groups attached to macromolecular material. Much of the large variation observed in D/H in this suite of IDPs reflects the variable loss of this labile component during atmospheric entry heating. IDPs with elevated 15N/ 14N ratios contain N in the form of amine (-NH 2) functional groups that are likely attached to other molecules such as aromatic hydrocarbons. The host of the N isotopic anomalies is not as readily lost during entry heating as the D-rich material. Infrared analysis shows that while the organic matter in primitive anhydrous IDPs is similar to that observed in acid residues of primitive chondritic meteorites, the measured aromatic:aliphatic ratio is markedly lower in the IDPs.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.gca.2003.10.044</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-7037
ispartof Geochimica et cosmochimica acta, 2004-06, Vol.68 (11), p.2577-2589
issn 0016-7037
1872-9533
language eng
recordid cdi_osti_scitechconnect_15015634
source Elsevier ScienceDirect Journals
subjects CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
CLOUDS
DUSTS
INTERPLANETARY SPACE
NATIONAL SYNCHROTRON LIGHT SOURCE
title The nature of molecular cloud material in interplanetary dust
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A08%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20nature%20of%20molecular%20cloud%20material%20in%20interplanetary%20dust&rft.jtitle=Geochimica%20et%20cosmochimica%20acta&rft.au=Keller,%20Lindsay%20P.&rft.aucorp=Brookhaven%20National%20Laboratory,%20National%20Synchrotron%20Light%20Source%20(US)&rft.date=2004-06-01&rft.volume=68&rft.issue=11&rft.spage=2577&rft.epage=2589&rft.pages=2577-2589&rft.issn=0016-7037&rft.eissn=1872-9533&rft_id=info:doi/10.1016/j.gca.2003.10.044&rft_dat=%3Cproquest_osti_%3E17684299%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17684299&rft_id=info:pmid/&rft_els_id=S0016703703008950&rfr_iscdi=true