The nature of molecular cloud material in interplanetary dust
Eight interplanetary dust particles (IDPs) exhibiting a wide range of H and N isotopic anomalies have been studied by transmission electron microscopy, x-ray absorption near-edge structure spectroscopy, and Fourier-transform infrared spectroscopy. These anomalies are believed to have originated duri...
Gespeichert in:
Veröffentlicht in: | Geochimica et cosmochimica acta 2004-06, Vol.68 (11), p.2577-2589 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Eight interplanetary dust particles (IDPs) exhibiting a wide range of H and N isotopic anomalies have been studied by transmission electron microscopy, x-ray absorption near-edge structure spectroscopy, and Fourier-transform infrared spectroscopy. These anomalies are believed to have originated during chemical reactions in a cold molecular cloud that was the precursor to the Solar System. The chemical and mineralogical studies reported here thus constitute direct studies of preserved molecular cloud materials. The H and N isotopic anomalies are hosted by different hydrocarbons that reside in the abundant carbonaceous matrix of the IDPs. Infrared measurements constrain the major deuterium (D) host in the D-enriched IDPs to thermally labile aliphatic hydrocarbon groups attached to macromolecular material. Much of the large variation observed in D/H in this suite of IDPs reflects the variable loss of this labile component during atmospheric entry heating. IDPs with elevated
15N/
14N ratios contain N in the form of amine (-NH
2) functional groups that are likely attached to other molecules such as aromatic hydrocarbons. The host of the N isotopic anomalies is not as readily lost during entry heating as the D-rich material. Infrared analysis shows that while the organic matter in primitive anhydrous IDPs is similar to that observed in acid residues of primitive chondritic meteorites, the measured aromatic:aliphatic ratio is markedly lower in the IDPs. |
---|---|
ISSN: | 0016-7037 1872-9533 |
DOI: | 10.1016/j.gca.2003.10.044 |