Investigation of HCCI combustion of diethyl ether and ethanol mixtures using carbon 14 tracing and numerical simulations

Despite the rapid combustion typically experienced in homogeneous charge compression ignition (HCCI), components in fuel mixtures do not ignite in unison or burn equally. In our experiments and modeling of blends of diethyl ether (DEE) and ethanol (EtOH), the DEE led combustion and proceeded further...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Combustion Institute 2005-01, Vol.30 (2), p.2693-2700
Hauptverfasser: Mack, J.H., Flowers, D.L., Buchholz, B.A., Dibble, R.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite the rapid combustion typically experienced in homogeneous charge compression ignition (HCCI), components in fuel mixtures do not ignite in unison or burn equally. In our experiments and modeling of blends of diethyl ether (DEE) and ethanol (EtOH), the DEE led combustion and proceeded further toward completion, as indicated by 14C isotope tracing. A numerical model of HCCI combustion of DEE and EtOH mixtures supports the isotopic findings. Although both approaches lacked information on incompletely combusted intermediates plentiful in HCCI emissions, the numerical model and 14C tracing data agreed within the limitations of the single zone model. Despite the fact that DEE is more reactive than EtOH in HCCI engines, they are sufficiently similar that we did not observe a large elongation of energy release or significant reduction in inlet temperature required for light-off, both desired effects for the combustion event. This finding suggests that, in general, HCCI combustion of fuel blends may have preferential combustion of some of the blend components.
ISSN:1540-7489
1873-2704
DOI:10.1016/j.proci.2004.08.136