Bacterial Productivity in a Ferrocyanide-Contaminated Aquifer at a Nuclear Waste Site

This study examined potential microbial impacts of cyanide contamination in an aquifer affected by ferrocyanide disposal from nuclear waste processing at the US Department of Energy’s Hanford Site in south-eastern Washington State (USA). We examined bacterial productivity and microbial cell density...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2018-08, Vol.10 (8), p.1072
Hauptverfasser: Plymale, Andrew, Wells, Jacqueline, Graham, Emily, Qafoku, Odeta, Brooks, Shelby, Lee, Brady
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study examined potential microbial impacts of cyanide contamination in an aquifer affected by ferrocyanide disposal from nuclear waste processing at the US Department of Energy’s Hanford Site in south-eastern Washington State (USA). We examined bacterial productivity and microbial cell density in groundwater (GW) from wells with varying levels of recent and historical total cyanide concentrations. We used tritiated leucine (3H-Leu) uptake as a proxy for heterotrophic, aerobic bacterial productivity in the GW, and we measured cell density via nucleic acid staining followed by epifluorescence microscopy. Bacterial productivity varied widely, both among wells that had high historical and recent total cyanide (CN−) concentrations and among wells that had low total CN− values. Standing microbial biomass varied less, and was generally greater than that observed in a similar study of uranium-contaminated hyporheic-zone groundwater at the Hanford Site. Our results showed no correlation between 3H-Leu uptake and recent or historical cyanide concentrations in the wells, consistent with what is known about cyanide toxicity with respect to iron speciation. However, additional sampling of the CN− affected groundwater, both in space and time, would be needed to confirm that the CN− contamination is not affecting the GW biota.
ISSN:2073-4441
2073-4441
DOI:10.3390/w10081072