Exploiting micro-scale structural and chemical observations in real time for understanding chemical conversion: LEEM/PEEM studies over CeOx–Cu(111)

•Multi length-scale characterization reveals structural variations of model systems.•CeOx-Cu(111) system exhibits inhomogeneous defect mediated structures.•Macro and nanoscale investigation can miss chemically relevant microsized features.•Microscale information should be included in interpretation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultramicroscopy 2017-12, Vol.183 (C), p.84-88
Hauptverfasser: Duchoň, Tomáš, Hackl, Johanna, Höcker, Jan, Veltruská, Kateřina, Matolín, Vladimír, Falta, Jens, Cramm, Stefan, Nemšák, Slavomír, Schneider, Claus M., Flege, Jan Ingo, Senanayake, Sanjaya D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Multi length-scale characterization reveals structural variations of model systems.•CeOx-Cu(111) system exhibits inhomogeneous defect mediated structures.•Macro and nanoscale investigation can miss chemically relevant microsized features.•Microscale information should be included in interpretation of surface chemistry. Proper consideration of length-scales is critical for elucidating active sites/phases in heterogeneous catalysis, revealing chemical function of surfaces and identifying fundamental steps of chemical reactions. Using the example of ceria thin films deposited on the Cu(111) surface, we demonstrate the benefits of multi length-scale experimental framework for understanding chemical conversion. Specifically, exploiting the tunable sampling and spatial resolution of photoemission electron microscopy, we reveal crystal defect mediated structures of inhomogeneous copper–ceria mixed phase that grow during preparation of ceria/Cu(111) model systems. The density of the microsized structures is such that they are relevant to the chemistry, but unlikely to be found during investigation at the nanoscale or with atomic level investigations. Our findings highlight the importance of accessing micro-scale when considering chemical pathways over heteroepitaxially grown model systems.
ISSN:0304-3991
1879-2723
DOI:10.1016/j.ultramic.2017.05.003