Initial Results from the GEM Challenge on the Spacecraft Surface Charging Environment

Spacecraft surface charging during geomagnetically disturbed times is one of the most important causes of satellite anomalies. Predicting the surface charging environment is one prevalent task of the geospace environment models. Therefore, the Geospace Environment Modeling (GEM) Focus Group "In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Space Weather 2019-02, Vol.17 (2), p.299-312
Hauptverfasser: Yu, Yiqun, Rastaetter, Lutz, Jordanova, Vania K., Zheng, Yihua, Engel, Miles, Fok, Mei-Ching, Kuznetsova, Maria M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spacecraft surface charging during geomagnetically disturbed times is one of the most important causes of satellite anomalies. Predicting the surface charging environment is one prevalent task of the geospace environment models. Therefore, the Geospace Environment Modeling (GEM) Focus Group "Inner Magnetosphere Crossenergy/Population Interactions" initiated a communitywide challenge study to assess the capability of several inner magnetosphere ring current models in determining surface charging environment for the Van Allen Probes orbits during the 17 March 2013 storm event. The integrated electron flux between 10 and 50 keV is used as the metrics. Various skill scores are applied to quantitatively measure the modeling performance against observations. Results indicate that no model consistently perform the best in all of the skill scores or for both satellites. We find that from these simulations the ring current model with observational flux boundary condition and Weimer electric potential driver generally reproduces the most realistic flux level around the spacecraft. A simple and weaker VollandStern electric field is not capable of effectively transporting the same plasma at the boundary toward the Earth. On the other hand, if the ring current model solves the electric field selfconsistently and obtains similar strength and pattern in the equatorial plane as the Weimer model, the boundary condition plays another crucial role in determining the electron flux level in the inner region. When the boundary flux spectra based on magnetohydrodynamics (MHD) model/empirical model deviate from the shape or magnitude of the observed distribution function, the simulation produces poor skill scores along Van Allen Probes orbits.
ISSN:1539-4956
1542-7390
1539-4964
1542-7390
DOI:10.1029/2018SW002031