Atomic layer deposition of 2D and 3D standards for synchrotron-based quantitative composition and structure analysis methods

Atomic layer deposition (ALD) is a scalable deposition technique known for producing uniform, conformal films of a wide range of compounds on nearly any substrate material. These traits make it an ideal deposition method for producing films to replace the National Institute of Standards and Technolo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vacuum science & technology. A, Vacuum, surfaces, and films Vacuum, surfaces, and films, 2018-02, Vol.36 (2)
Hauptverfasser: Becker, Nicholas G., Butterworth, Anna L., Salome, Murielle, Sutton, Stephen R., De Andrade, Vincent, Sokolov, Andrey, Westphal, Andrew J., Proslier, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atomic layer deposition (ALD) is a scalable deposition technique known for producing uniform, conformal films of a wide range of compounds on nearly any substrate material. These traits make it an ideal deposition method for producing films to replace the National Institute of Standards and Technology (NIST) standards and create Standard Reference Materials (SRMs) on a wide range of relevant two-dimensional and three-dimensional substrates. The use of SRM from NIST for quantitative analysis of chemical composition using synchrotron based x-ray fluorescence (SR-XRF) and scanning transmission x-ray microscopy (STXM) is common. Such standards, however, can suffer from inhomogeneity in chemical composition and thickness and often require further calculations, based on sample mounting and detector geometry, to obtain quantitative results. These inhomogeneities negatively impact the reproducibility of the measurements and the quantitative measure itself. Utilizing Rutherford backscattering, x-ray reflectivity, quartz crystal microbalance, STXM, and SR-XRF, the authors show here that ALD is capable of producing high quality standards that are homogenous over scales ranging from nanometers to 100s of micrometers.
ISSN:0734-2101
1520-8559
DOI:10.1116/1.5025240