Dislocation-induced thermal transport anisotropy in single-crystal group-III nitride films

Dislocations, one-dimensional lattice imperfections, are common to technologically important materials such as III–V semiconductors, and adversely affect heat dissipation in, for example, nitride-based high-power electronic devices. For decades, conventional nonlinear elasticity models have predicte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2019-02, Vol.18 (2), p.136-140
Hauptverfasser: Sun, Bo, Haunschild, Georg, Polanco, Carlos, Ju, James (Zi-Jian), Lindsay, Lucas, Koblmüller, Gregor, Koh, Yee Kan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dislocations, one-dimensional lattice imperfections, are common to technologically important materials such as III–V semiconductors, and adversely affect heat dissipation in, for example, nitride-based high-power electronic devices. For decades, conventional nonlinear elasticity models have predicted that this thermal resistance is only appreciable when the heat flux is perpendicular to the dislocations. However, this dislocation-induced anisotropic thermal transport has yet to be seen experimentally. Using time-domain thermoreflectance, we measure strong thermal transport anisotropy governed by highly oriented threading dislocation arrays throughout micrometre-thick, single-crystal indium nitride films. We find that the cross-plane thermal conductivity is almost tenfold higher than the in-plane thermal conductivity at 80 K when the dislocation density is ~3 × 10 10  cm −2 . This large anisotropy is not predicted by conventional models. With enhanced understanding of dislocation–phonon interactions, our results may allow the tailoring of anisotropic thermal transport with line defects, and could facilitate methods for directed heat dissipation in the thermal management of diverse device applications. Thermal management can improve device function, but the role of dislocations is poorly understood. Here, thermoreflectance measurements show orientated dislocations in InN cause a thermal anisotropy ratio of 10, which is not predicted by standard models.
ISSN:1476-1122
1476-4660
DOI:10.1038/s41563-018-0250-y