Nano-machining, surface analysis and emittance measurements of a copper photocathode at SPARC_LAB
R&D activity on Cu photocathodes is under development at the SPARC_LAB test facility to fully characterize each stage of the photocathode “life” and to have a complete overview of the photoemission properties in high brightness photo-injectors. The nano(n)-machining process presented here consis...
Gespeichert in:
Veröffentlicht in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2018-11, Vol.909 (C), p.233-238 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | R&D activity on Cu photocathodes is under development at the SPARC_LAB test facility to fully characterize each stage of the photocathode “life” and to have a complete overview of the photoemission properties in high brightness photo-injectors. The nano(n)-machining process presented here consists in diamond milling, and blowing with dry nitrogen. This procedure reduces the roughness of the cathode surface and prevents surface contamination introduced by other techniques, such as polishing with diamond paste or the machining with oil. Both high roughness and surface contamination cause an increase of intrinsic emittance and consequently a reduction of the overall electron beam brightness. To quantify these effects, we have characterized the photocathode surface in terms of roughness measurement, and morphology and chemical composition analysis by means of Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), and Atomic Force Microscopy (AFM) techniques. The effects of n-machining on the electron beam quality have been also investigated through emittance measurements before and after the surface processing technique. Finally, we present preliminary emittance studies of yttrium thin film on Cu photocathodes.
•A study of understand and characterize each stage of the photocathode life is proposed.•The AFM image has been analyzed to estimate the photocathode surface roughness and its contribution to the emittance.•The experimental beam emittance has been determined using the solenoid scan technique by varying beam parameters. |
---|---|
ISSN: | 0168-9002 1872-9576 |
DOI: | 10.1016/j.nima.2018.01.041 |