Efficient Nonthermal Particle Acceleration by the Kink Instability in Relativistic Jets
Relativistic magnetized jets from active galaxies are among the most powerful cosmic accelerators, but their particle acceleration mechanisms remain a mystery. We present a new acceleration mechanism associated with the development of the helical kink instability in relativistic jets, which leads to...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2018-12, Vol.121 (24), p.245101-245101, Article 245101 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Relativistic magnetized jets from active galaxies are among the most powerful cosmic accelerators, but their particle acceleration mechanisms remain a mystery. We present a new acceleration mechanism associated with the development of the helical kink instability in relativistic jets, which leads to the efficient conversion of the jet's magnetic energy into nonthermal particles. Large-scale three-dimensional ab initio simulations reveal that the formation of highly tangled magnetic fields and a large-scale inductive electric field throughout the kink-unstable region promotes rapid energization of the particles. The energy distribution of the accelerated particles develops a well-defined power-law tail extending to the radiation-reaction limited energy in the case of leptons, and to the confinement energy of the jet in the case of ions. When applied to the conditions of well-studied bright knots in jets from active galaxies, this mechanism can account for the spectrum of synchrotron and inverse Compton radiating particles, and offers a viable means of accelerating ultrahigh-energy cosmic rays to 10^{20} eV. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.121.245101 |