Universal asymptotics of three-point coefficients from elliptic representation of Virasoro blocks

In (1+1)-d CFTs, the 4-point function on the plane can be mapped to the pillow geometry and thereby crossing symmetry gets translated into a modular property. This feature arises from the Virasoro blocks in the elliptic representation. We use these modular features to derive a universal asymptotic f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2018-11, Vol.98 (10), p.101901, Article 101901
Hauptverfasser: Das, Diptarka, Datta, Shouvik, Pal, Sridip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In (1+1)-d CFTs, the 4-point function on the plane can be mapped to the pillow geometry and thereby crossing symmetry gets translated into a modular property. This feature arises from the Virasoro blocks in the elliptic representation. We use these modular features to derive a universal asymptotic formula for OPE coefficients in which one of the operators is averaged over heavy primaries. As an application, we demonstrate that the coarse-grained heavy channel then reproduces features of the holographic 2→2 S-matrix which has black holes as their intermediate states.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.98.101901