CHALLENGES AND PROSPECTS FOR REDUCING COUPLED CLIMATE MODEL SST BIASES IN THE EASTERN TROPICAL ATLANTIC AND PACIFIC OCEANS: The U.S. CLIVAR Eastern Tropical Oceans Synthesis Working Group

Well-known problems trouble coupled general circulation models of the eastern Atlantic and Pacific Ocean basins. Model climates are significantly more symmetric about the equator than is observed. Model sea surface temperatures are biased warm south and southeast of the equator, and the atmosphere i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the American Meteorological Society 2016-12, Vol.97 (12), p.2305-2328
Hauptverfasser: Zuidema, Paquita, Chang, Ping, Medeiros, Brian, Kirtman, Ben P., Mechoso, Roberto, Schneider, Edwin K., Toniazzo, Thomas, Richter, Ingo, Small, R. Justin, Bellomo, Katinka, Brandt, Peter, de Szoeke, Simon, Farrar, J. Thomas, Jung, Eunsil, Kato, Seiji, Li, Mingkui, Patricola, Christina, Wang, Zaiyu, Wood, Robert, Xu, Zhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Well-known problems trouble coupled general circulation models of the eastern Atlantic and Pacific Ocean basins. Model climates are significantly more symmetric about the equator than is observed. Model sea surface temperatures are biased warm south and southeast of the equator, and the atmosphere is too rainy within a band south of the equator. Near-coastal eastern equatorial SSTs are too warm, producing a zonal SST gradient in the Atlantic opposite in sign to that observed. The U.S. Climate Variability and Predictability Program (CLIVAR) Eastern Tropical Ocean Synthesis Working Group (WG) has pursued an updated assessment of coupled model SST biases, focusing on the surface energy balance components, on regional error sources from clouds, deep convection, winds, and ocean eddies; on the sensitivity to model resolution; and on remote impacts. Motivated by the assessment, the WG makes the following recommendations: 1) encourage identification of the specific parameterizations contributing to the biases in individual models, as these can be model dependent; 2) restrict multimodel intercomparisons to specific processes; 3) encourage development of high-resolution coupled models with a concurrent emphasis on parameterization development of finer-scale ocean and atmosphere features, including low clouds; 4) encourage further availability of all surface flux components from buoys, for longer continuous time periods, in persistently cloudy regions; and 5) focus on the eastern basin coastal oceanic upwelling regions, where further opportunities for observational–modeling synergism exist.
ISSN:0003-0007
1520-0477
DOI:10.1175/bams-d-15-00274.1