Self-Consistent Charge Density-Functional Tight-Binding Parametrization for Pt–Ru Alloys

We present a self-consistent charge density-functional tight-binding (SCC-DFTB) parametrization for PtRu alloys, which is developed by employing a training set of alloy cluster energies and forces obtained from Kohn–Sham density-functional theory (DFT) calculations. Extensive simulations of a testin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2017-03, Vol.121 (12), p.2497-2502
Hauptverfasser: Shi, Hongbo, Koskinen, Pekka, Ramasubramaniam, Ashwin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2502
container_issue 12
container_start_page 2497
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 121
creator Shi, Hongbo
Koskinen, Pekka
Ramasubramaniam, Ashwin
description We present a self-consistent charge density-functional tight-binding (SCC-DFTB) parametrization for PtRu alloys, which is developed by employing a training set of alloy cluster energies and forces obtained from Kohn–Sham density-functional theory (DFT) calculations. Extensive simulations of a testing set of PtRu alloy nanoclusters show that this SCC-DFTB scheme is capable of capturing cluster formation energies with high accuracy relative to DFT calculations. The new SCC-DFTB parametrization is employed within a genetic algorithm to search for global minima of PtRu clusters in the range of 13–81 atoms and the emergence of Ru-core/Pt-shell structures at intermediate alloy compositions, consistent with known results, is systematically demonstrated. Our new SCC-DFTB parametrization enables computationally inexpensive and accurate modeling of Pt–Ru clusters that are among the best-performing catalysts in numerous energy applications.
doi_str_mv 10.1021/acs.jpca.7b00701
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1480252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1875400115</sourcerecordid><originalsourceid>FETCH-LOGICAL-a471t-83bfd9741d60df0515d17cc246df0e2bafe4a2a174f5792a66a18ed27bf3ed0e3</originalsourceid><addsrcrecordid>eNp1kLFyEzEQhjVMGJwEeqrMTSqKnNHqTqdzmZgYmMkMGTANjUanW9nKnCVH0hVOxTvwhjwJMjZ0qVa7-v6_-Ah5C3QKlMF7peP0YavVVHSUCgovyClwRkvOgJ_kN21nJW-q2YScxfhAKYWK1a_IhLWsEVUlTsmPbziYcu5dtDGhS8V8rcIKiw-YL2lXLkank_VODcXSrtapvLGut25V3KugNpiCfVL7_8L4UNyn3z9_fR2L62Hwu_iavDRqiPjmOM_J98Xtcv6pvPvy8fP8-q5UtYBUtlVn-pmooW9obygH3oPQmtVN3pB1ymCtmAJRGy5mTDWNghZ7JjpTYU-xOieXh14fk5VR24R6rb1zqJOEuqWMswy9O0Db4B9HjElubNQ4DMqhH6OEVvA6-wGeUXpAdfAxBjRyG-xGhZ0EKvfaZdYu99rlUXuOXBzbx26D_f_AP88ZuDoAf6N-DFlofL7vD_mQj54</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875400115</pqid></control><display><type>article</type><title>Self-Consistent Charge Density-Functional Tight-Binding Parametrization for Pt–Ru Alloys</title><source>American Chemical Society Journals</source><creator>Shi, Hongbo ; Koskinen, Pekka ; Ramasubramaniam, Ashwin</creator><creatorcontrib>Shi, Hongbo ; Koskinen, Pekka ; Ramasubramaniam, Ashwin ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><description>We present a self-consistent charge density-functional tight-binding (SCC-DFTB) parametrization for PtRu alloys, which is developed by employing a training set of alloy cluster energies and forces obtained from Kohn–Sham density-functional theory (DFT) calculations. Extensive simulations of a testing set of PtRu alloy nanoclusters show that this SCC-DFTB scheme is capable of capturing cluster formation energies with high accuracy relative to DFT calculations. The new SCC-DFTB parametrization is employed within a genetic algorithm to search for global minima of PtRu clusters in the range of 13–81 atoms and the emergence of Ru-core/Pt-shell structures at intermediate alloy compositions, consistent with known results, is systematically demonstrated. Our new SCC-DFTB parametrization enables computationally inexpensive and accurate modeling of Pt–Ru clusters that are among the best-performing catalysts in numerous energy applications.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.7b00701</identifier><identifier>PMID: 28267337</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; MATERIALS SCIENCE</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2017-03, Vol.121 (12), p.2497-2502</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a471t-83bfd9741d60df0515d17cc246df0e2bafe4a2a174f5792a66a18ed27bf3ed0e3</citedby><cites>FETCH-LOGICAL-a471t-83bfd9741d60df0515d17cc246df0e2bafe4a2a174f5792a66a18ed27bf3ed0e3</cites><orcidid>0000-0001-6595-7442 ; 0000000165957442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.7b00701$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.7b00701$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28267337$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1480252$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Hongbo</creatorcontrib><creatorcontrib>Koskinen, Pekka</creatorcontrib><creatorcontrib>Ramasubramaniam, Ashwin</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><title>Self-Consistent Charge Density-Functional Tight-Binding Parametrization for Pt–Ru Alloys</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>We present a self-consistent charge density-functional tight-binding (SCC-DFTB) parametrization for PtRu alloys, which is developed by employing a training set of alloy cluster energies and forces obtained from Kohn–Sham density-functional theory (DFT) calculations. Extensive simulations of a testing set of PtRu alloy nanoclusters show that this SCC-DFTB scheme is capable of capturing cluster formation energies with high accuracy relative to DFT calculations. The new SCC-DFTB parametrization is employed within a genetic algorithm to search for global minima of PtRu clusters in the range of 13–81 atoms and the emergence of Ru-core/Pt-shell structures at intermediate alloy compositions, consistent with known results, is systematically demonstrated. Our new SCC-DFTB parametrization enables computationally inexpensive and accurate modeling of Pt–Ru clusters that are among the best-performing catalysts in numerous energy applications.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>MATERIALS SCIENCE</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kLFyEzEQhjVMGJwEeqrMTSqKnNHqTqdzmZgYmMkMGTANjUanW9nKnCVH0hVOxTvwhjwJMjZ0qVa7-v6_-Ah5C3QKlMF7peP0YavVVHSUCgovyClwRkvOgJ_kN21nJW-q2YScxfhAKYWK1a_IhLWsEVUlTsmPbziYcu5dtDGhS8V8rcIKiw-YL2lXLkank_VODcXSrtapvLGut25V3KugNpiCfVL7_8L4UNyn3z9_fR2L62Hwu_iavDRqiPjmOM_J98Xtcv6pvPvy8fP8-q5UtYBUtlVn-pmooW9obygH3oPQmtVN3pB1ymCtmAJRGy5mTDWNghZ7JjpTYU-xOieXh14fk5VR24R6rb1zqJOEuqWMswy9O0Db4B9HjElubNQ4DMqhH6OEVvA6-wGeUXpAdfAxBjRyG-xGhZ0EKvfaZdYu99rlUXuOXBzbx26D_f_AP88ZuDoAf6N-DFlofL7vD_mQj54</recordid><startdate>20170330</startdate><enddate>20170330</enddate><creator>Shi, Hongbo</creator><creator>Koskinen, Pekka</creator><creator>Ramasubramaniam, Ashwin</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6595-7442</orcidid><orcidid>https://orcid.org/0000000165957442</orcidid></search><sort><creationdate>20170330</creationdate><title>Self-Consistent Charge Density-Functional Tight-Binding Parametrization for Pt–Ru Alloys</title><author>Shi, Hongbo ; Koskinen, Pekka ; Ramasubramaniam, Ashwin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a471t-83bfd9741d60df0515d17cc246df0e2bafe4a2a174f5792a66a18ed27bf3ed0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>MATERIALS SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Hongbo</creatorcontrib><creatorcontrib>Koskinen, Pekka</creatorcontrib><creatorcontrib>Ramasubramaniam, Ashwin</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Hongbo</au><au>Koskinen, Pekka</au><au>Ramasubramaniam, Ashwin</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Consistent Charge Density-Functional Tight-Binding Parametrization for Pt–Ru Alloys</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2017-03-30</date><risdate>2017</risdate><volume>121</volume><issue>12</issue><spage>2497</spage><epage>2502</epage><pages>2497-2502</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>We present a self-consistent charge density-functional tight-binding (SCC-DFTB) parametrization for PtRu alloys, which is developed by employing a training set of alloy cluster energies and forces obtained from Kohn–Sham density-functional theory (DFT) calculations. Extensive simulations of a testing set of PtRu alloy nanoclusters show that this SCC-DFTB scheme is capable of capturing cluster formation energies with high accuracy relative to DFT calculations. The new SCC-DFTB parametrization is employed within a genetic algorithm to search for global minima of PtRu clusters in the range of 13–81 atoms and the emergence of Ru-core/Pt-shell structures at intermediate alloy compositions, consistent with known results, is systematically demonstrated. Our new SCC-DFTB parametrization enables computationally inexpensive and accurate modeling of Pt–Ru clusters that are among the best-performing catalysts in numerous energy applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28267337</pmid><doi>10.1021/acs.jpca.7b00701</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6595-7442</orcidid><orcidid>https://orcid.org/0000000165957442</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2017-03, Vol.121 (12), p.2497-2502
issn 1089-5639
1520-5215
language eng
recordid cdi_osti_scitechconnect_1480252
source American Chemical Society Journals
subjects INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
MATERIALS SCIENCE
title Self-Consistent Charge Density-Functional Tight-Binding Parametrization for Pt–Ru Alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Consistent%20Charge%20Density-Functional%20Tight-Binding%20Parametrization%20for%20Pt%E2%80%93Ru%20Alloys&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Shi,%20Hongbo&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States).%20National%20Energy%20Research%20Scientific%20Computing%20Center%20(NERSC)&rft.date=2017-03-30&rft.volume=121&rft.issue=12&rft.spage=2497&rft.epage=2502&rft.pages=2497-2502&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.7b00701&rft_dat=%3Cproquest_osti_%3E1875400115%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1875400115&rft_id=info:pmid/28267337&rfr_iscdi=true