Self-Consistent Charge Density-Functional Tight-Binding Parametrization for Pt–Ru Alloys

We present a self-consistent charge density-functional tight-binding (SCC-DFTB) parametrization for PtRu alloys, which is developed by employing a training set of alloy cluster energies and forces obtained from Kohn–Sham density-functional theory (DFT) calculations. Extensive simulations of a testin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2017-03, Vol.121 (12), p.2497-2502
Hauptverfasser: Shi, Hongbo, Koskinen, Pekka, Ramasubramaniam, Ashwin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a self-consistent charge density-functional tight-binding (SCC-DFTB) parametrization for PtRu alloys, which is developed by employing a training set of alloy cluster energies and forces obtained from Kohn–Sham density-functional theory (DFT) calculations. Extensive simulations of a testing set of PtRu alloy nanoclusters show that this SCC-DFTB scheme is capable of capturing cluster formation energies with high accuracy relative to DFT calculations. The new SCC-DFTB parametrization is employed within a genetic algorithm to search for global minima of PtRu clusters in the range of 13–81 atoms and the emergence of Ru-core/Pt-shell structures at intermediate alloy compositions, consistent with known results, is systematically demonstrated. Our new SCC-DFTB parametrization enables computationally inexpensive and accurate modeling of Pt–Ru clusters that are among the best-performing catalysts in numerous energy applications.
ISSN:1089-5639
1520-5215
DOI:10.1021/acs.jpca.7b00701