Cavity-enhanced Thomson scattering measurements of electron density and temperature in a hollow cathode discharge
A cavity-enhanced Thomson scattering (CETS) diagnostic has been developed to perform electron density and temperature measurements in low-density weakly ionized discharges. The diagnostic approach is based on generating a high-power beam in an optical build-up cavity and using the beam as a light so...
Gespeichert in:
Veröffentlicht in: | Optics letters 2018-11, Vol.43 (21), p.5343-5346 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A cavity-enhanced Thomson scattering (CETS) diagnostic has been developed to perform electron density and temperature measurements in low-density weakly ionized discharges. The diagnostic approach is based on generating a high-power beam in an optical build-up cavity and using the beam as a light source for Thomson scattering from plasma housed within the cavity. In our setup, a high-power (∼5 W) fiber laser at 1064 nm allows an intra-cavity power of 11.7 kW in a two-mirror cavity for measurements in the plume of a BaO hollow cathode discharge. A study of plasma density and temperature was performed at various operating conditions. Electron densities and temperatures in the range of ∼10
cm
and ∼3 eV were measured, respectively. The high signal-to-noise ratio (SNR) of the present measurements (SNR=1100) suggests the ability to measure significantly lower density plasmas in the range of ∼3×10
to 3×10
cm
, thereby extending current laser Thomson scattering diagnostic capabilities. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.43.005343 |