Emphanitic anharmonicity in PbSe at high temperature and anomalous electronic properties in the PbQ(Q=S,Se,Te) system
The temperature dependence of the local structure of PbThe temperature dependence of the local structure of PbSe has been investigated using pair distribution function (PDF) analysis of x-ray and neutron powder diffraction data and density functional theory (DFT) calculations. Observation of non-Gau...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2018-10, Vol.98 (14), p.144108 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The temperature dependence of the local structure of PbThe temperature dependence of the local structure of PbSe has been investigated using pair distribution function (PDF) analysis of x-ray and neutron powder diffraction data and density functional theory (DFT) calculations. Observation of non-Gaussian PDF peaks at high temperature indicates the presence of significant anharmonicity, which can be modeled as Pb off-centering along [100] directions that grows on warming similar to the behavior seen in PbTe and PbS and sometimes called emphanisis. Interestingly, the emphanitic response is smaller in PbSe than in both PbS and PbTe indicating a nonmonotonic response with chalcogen atomic number in the PbQ (Q = S, Se, Te) series. The DFT calculations indicate a correlation between band gap and the amplitude of [100] dipolar distortion, suggesting that emphanisis may be behind the anomalous composition and temperature dependencies of the band gaps in this series.Se has been investigated using pair distribution function (PDF) analysis of x-ray and neutron powder diffraction data and density functional theory (DFT) calculations. Observation of non-Gaussian PDF peaks at high temperature indicates the presence of significant anharmonicity, which can be modeled as Pb off-centering along [100] directions that grows on warming similar to the behavior seen in PbTe and PbS and sometimes called emphanisis. Interestingly, the emphanitic response is smaller in PbSe than in both PbS and PbTe indicating a nonmonotonic response with chalcogen atomic number in the PbQ (Q = S, Se, Te) series. The DFT calculations indicate a correlation between band gap and the amplitude of [100] dipolar distortion, suggesting that emphanisis may be behind the anomalous composition and temperature dependencies of the band gaps in this series. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.98.144108 |