Quantifying heterogeneous deformation in grain boundary regions on shock loaded tantalum using spherical and sharp tip nanoindentation
Grain boundaries play an important role in the overall mechanical performance of metals and alloys; however, isolating the effects of individual grain boundaries remains rather challenging experimentally. In this work, wire-feed, electron beam additively manufactured tantalum is studied under shock...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2018-11, Vol.737 (C), p.373-382 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Grain boundaries play an important role in the overall mechanical performance of metals and alloys; however, isolating the effects of individual grain boundaries remains rather challenging experimentally. In this work, wire-feed, electron beam additively manufactured tantalum is studied under shock loading conditions generating incipient spall damage. Three grain boundaries aligned parallel to the shock direction were isolated inside a single sample. Postmortem metallography showed voids preferentially appeared on two of the three grain boundaries which had high misorientation angles > 30° compared to the third grain boundary with a relatively lower misorientation angle |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/j.msea.2018.09.075 |