Quantifying heterogeneous deformation in grain boundary regions on shock loaded tantalum using spherical and sharp tip nanoindentation

Grain boundaries play an important role in the overall mechanical performance of metals and alloys; however, isolating the effects of individual grain boundaries remains rather challenging experimentally. In this work, wire-feed, electron beam additively manufactured tantalum is studied under shock...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2018-11, Vol.737 (C), p.373-382
Hauptverfasser: Weaver, Jordan S., Jones, David R., Li, Nan, Mara, Nathan, Fensin, Saryu, Gray, George T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Grain boundaries play an important role in the overall mechanical performance of metals and alloys; however, isolating the effects of individual grain boundaries remains rather challenging experimentally. In this work, wire-feed, electron beam additively manufactured tantalum is studied under shock loading conditions generating incipient spall damage. Three grain boundaries aligned parallel to the shock direction were isolated inside a single sample. Postmortem metallography showed voids preferentially appeared on two of the three grain boundaries which had high misorientation angles > 30° compared to the third grain boundary with a relatively lower misorientation angle
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2018.09.075