Spectroscopic and Computational Characterization of Diethylenetriaminepentaacetic Acid/Transplutonium Chelates: Evidencing Heterogeneity in the Heavy Actinide(III) Series

The chemistry of trivalent transplutonium ions (Am3+, Cm3+, Bk3+, Cf3+, Es3+…) is usually perceived as monotonic and paralleling that of the trivalent lanthanide series. Herein, we present the first extended X‐ray absorption fine structure (EXAFS) study performed on a series of aqueous heavy actinid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie (International ed.) 2018-04, Vol.57 (17), p.4521-4526
Hauptverfasser: Deblonde, Gauthier J.‐P., Kelley, Morgan P., Su, Jing, Batista, Enrique R., Yang, Ping, Booth, Corwin H., Abergel, Rebecca J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The chemistry of trivalent transplutonium ions (Am3+, Cm3+, Bk3+, Cf3+, Es3+…) is usually perceived as monotonic and paralleling that of the trivalent lanthanide series. Herein, we present the first extended X‐ray absorption fine structure (EXAFS) study performed on a series of aqueous heavy actinide chelates, extending past Cm. The results obtained on diethylenetriaminepentaacetic acid (DTPA) complexes of trivalent Am, Cm, Bk, and Cf show a break to much shorter metal–oxygen nearest‐neighbor bond lengths in the case of Cf3+. Corroborating those results, density functional theory calculations, extended to Es3+, suggest that the shorter Cf−O and Es−O bonds could arise from the departure of the coordinated water molecule and contraction of the ligand around the metal relative to the other [MIIIDTPA(H2O)]2− (M=Am, Cm, Bk) complexes. Taken together, these experimental and theoretical results demonstrate inhomogeneity within the trivalent transplutonium series that has been insinuated and debated in recent years, and that may also be leveraged for future nuclear waste reprocessing technologies. Transplutonium coordination was probed by extended X‐ray absorption fine structure spectroscopy and through density functional theory calculations. Among the diethylenetriaminepentaacetic acid chelates formed with Am3+, Cm3+, Bk3+, Cf3+, and Es3+, the M−O bonds are much shorter for Cf and Es—a clear pivot in the heavy actinide series.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.201709183