Quark spins and anomalous Ward identity
We calculate the intrinsic quark spin contribution to the total proton spin using overlap valence quarks on three ensembles of 2+1-flavor RBC/UKQCD domain-wall configurations with different lattice spacings. The lowest pion mass of the ensembles is around 171 MeV, which is close to the physical poin...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2018-10, Vol.98 (7), p.074505, Article 074505 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We calculate the intrinsic quark spin contribution to the total proton spin using overlap valence quarks on three ensembles of 2+1-flavor RBC/UKQCD domain-wall configurations with different lattice spacings. The lowest pion mass of the ensembles is around 171 MeV, which is close to the physical point. With overlap fermions and a topological charge derived from the overlap operator, we verify the anomalous Ward identity between nucleon states with momentum transfer. Both the connected and the disconnected insertions of the axial-vector current are calculated. For the disconnected-insertion part, the cluster-decomposition error reduction technique is utilized for the lattice with the largest volume and the error can be reduced by 10%–40%. Nonperturbative renormalization is carried out and the final results are all reported in the MS¯ scheme at 2 GeV. We determine the total quark spin contribution to the nucleon spin to be ΔΣ=0.405(25)(37), which is consistent with the recent global fitting result of experimental data. The isovector axial coupling we obtain in this study is gA3=1.254(16)(30), which agrees well with the experimental value of 1.2723(23). |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.98.074505 |