Quark spins and anomalous Ward identity

We calculate the intrinsic quark spin contribution to the total proton spin using overlap valence quarks on three ensembles of 2+1-flavor RBC/UKQCD domain-wall configurations with different lattice spacings. The lowest pion mass of the ensembles is around 171 MeV, which is close to the physical poin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2018-10, Vol.98 (7), p.074505, Article 074505
Hauptverfasser: Liang, Jian, Yang, Yi-Bo, Draper, Terrence, Gong, Ming, Liu, Keh-Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We calculate the intrinsic quark spin contribution to the total proton spin using overlap valence quarks on three ensembles of 2+1-flavor RBC/UKQCD domain-wall configurations with different lattice spacings. The lowest pion mass of the ensembles is around 171 MeV, which is close to the physical point. With overlap fermions and a topological charge derived from the overlap operator, we verify the anomalous Ward identity between nucleon states with momentum transfer. Both the connected and the disconnected insertions of the axial-vector current are calculated. For the disconnected-insertion part, the cluster-decomposition error reduction technique is utilized for the lattice with the largest volume and the error can be reduced by 10%–40%. Nonperturbative renormalization is carried out and the final results are all reported in the MS¯ scheme at 2 GeV. We determine the total quark spin contribution to the nucleon spin to be ΔΣ=0.405(25)(37), which is consistent with the recent global fitting result of experimental data. The isovector axial coupling we obtain in this study is gA3=1.254(16)(30), which agrees well with the experimental value of 1.2723(23).
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.98.074505