Four-Carbon Criegee Intermediate from Isoprene Ozonolysis: Methyl Vinyl Ketone Oxide Synthesis, Infrared Spectrum, and OH Production

The reaction of ozone with isoprene, one of the most abundant volatile organic compounds in the atmosphere, produces three distinct carbonyl oxide species (RR′COO) known as Criegee intermediates: formaldehyde oxide (CH2OO), methyl vinyl ketone oxide (MVK-OO), and methacrolein oxide (MACR-OO). The na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2018-08, Vol.140 (34), p.10866-10880
Hauptverfasser: Barber, Victoria P, Pandit, Shubhrangshu, Green, Amy M, Trongsiriwat, Nisalak, Walsh, Patrick J, Klippenstein, Stephen J, Lester, Marsha I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The reaction of ozone with isoprene, one of the most abundant volatile organic compounds in the atmosphere, produces three distinct carbonyl oxide species (RR′COO) known as Criegee intermediates: formaldehyde oxide (CH2OO), methyl vinyl ketone oxide (MVK-OO), and methacrolein oxide (MACR-OO). The nature of the substituents (R,R′ = H, CH3, CHCH2) and conformations of the Criegee intermediates control their subsequent chemistry in the atmosphere. In particular, unimolecular decay of MVK-OO is predicted to be the major source of hydroxyl radicals (OH) in isoprene ozonolysis. This study reports the initial laboratory synthesis and direct detection of MVK-OO through reaction of a photolytically generated, resonance-stabilized mono­iodo­alkene radical with O2. MVK-OO is characterized utilizing infrared (IR) action spectroscopy, in which IR activation of MVK-OO with two quanta of CH stretch at ca. 6000 cm–1 is coupled with ultraviolet detection of the resultant OH products. MVK-OO is identified by comparison of the experimentally observed IR spectral features with theoretically predicted IR absorption spectra. For syn-MVK-OO, the rate of appearance of OH products agrees with the unimolecular decay rate predicted using statistical theory with tunneling. This validates the hydrogen atom transfer mechanism and computed transition-state barrier (18.0 kcal mol–1) leading to OH products. Theoretical calculations reveal an additional roaming pathway between the separating radical fragments, which results in other products. Master equation modeling yields a thermal unimolecular decay rate for syn-MVK-OO of 33 s–1 (298 K, 1 atm). For anti-MVK-OO, theoretical exploration of several unimolecular decay pathways predicts that isomerization to dioxole is the most likely initial step to products.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.8b06010