Numerical methods for motion of level sets by affine curvature

Abstract We study numerical methods for the nonlinear partial differential equation that governs the motion of level sets by affine curvature. We show that standard finite difference schemes are nonlinearly unstable. We build convergent finite difference schemes using the theory of viscosity solutio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of numerical analysis 2018-10, Vol.38 (4), p.1735-1767
Hauptverfasser: Oberman, Adam M, Salvador, Tiago
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We study numerical methods for the nonlinear partial differential equation that governs the motion of level sets by affine curvature. We show that standard finite difference schemes are nonlinearly unstable. We build convergent finite difference schemes using the theory of viscosity solutions. We demonstrate that our approximate solutions capture the affine invariance and morphological properties of the evolution. Numerical experiments demonstrate the accuracy and stability of the discretization.
ISSN:0272-4979
1464-3642
DOI:10.1093/imanum/drx045