Screening Fuels for Autoignition with Small-Volume Experiments and Gaussian Process Classification

Partially reacting candidate fuels under highly dilute conditions across a range of temperatures provides a means to classify the candidates based on traditional ignition characteristics using much lower quantities (sub-mL) than the full octane tests. Using a classifier based on a Gaussian Process m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2018-09, Vol.32 (9), p.9581-9591
Hauptverfasser: Lunderman, Spencer, Fioroni, Gina M, McCormick, Robert L, Nimlos, Mark R, Rahimi, Mohammad J, Grout, Ray W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Partially reacting candidate fuels under highly dilute conditions across a range of temperatures provides a means to classify the candidates based on traditional ignition characteristics using much lower quantities (sub-mL) than the full octane tests. Using a classifier based on a Gaussian Process model, synthetic species profiles obtained by plug flow reactor simulations at seven temperatures are used to demonstrate that the configuration can be used to classify 95% of the samples correctly for autoignition sensitivity exceeding a threshold (S ≥ 8) and 100%of the samples correctly for research octane number exceeding a threshold (RON ≥ 90). Molecular beam mass spectrometry (MBMS) experimental data at four temperatures is then used as the model input in a real-world test. Despite the nontrivial relationship between the MBMS measurements and speciation as well as experimental noise it is still possible to classify 95% of the samples correctly for RON and 85% of the samples correctly for S in a “leave-one-out” cross validation exercise. The test data set consists of 45 fuels and includes a variety of primary reference fuels, ethanol blends and other oxygenates.
ISSN:0887-0624
1520-5029
DOI:10.1021/acs.energyfuels.8b02112