Surface Adsorption Affects the Performance of Alkaline Anion-Exchange Membrane Fuel Cells
Material interactions at the polymer electrolytes–catalyst interface play a significant role in the catalytic efficiency of alkaline anion-exchange membrane fuel cells (AEMFCs). In this work, the surface adsorption behaviors of the cation–hydroxide–water and phenyl groups of polymer electrolytes on...
Gespeichert in:
Veröffentlicht in: | ACS catalysis 2018-10, Vol.8 (10), p.9429-9439 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Material interactions at the polymer electrolytes–catalyst interface play a significant role in the catalytic efficiency of alkaline anion-exchange membrane fuel cells (AEMFCs). In this work, the surface adsorption behaviors of the cation–hydroxide–water and phenyl groups of polymer electrolytes on Pd- and Pt-based catalysts are investigated using two Pd-based hydrogen oxidation catalystsPd/C and Pd/C-CeO2and two Pt-based catalystsPt/C and Pt-Ru/C. The rotating disk electrode study and complementary density functional theory calculations indicate that relatively low coadsorption of cation–hydroxide–water of the Pd-based catalysts enhances the hydrogen oxidation activity, yet substantial hydrogenation of the surface adsorbed phenyl groups reduces the hydrogen oxidation activity. The adsorption-driven interfacial behaviors of the Pd- and Pt-based catalysts correlate well with the AEMFC performance and short-term stability. This study gives insight into the potential use of non-Pt hydrogen oxidation reaction catalysts that have different surface adsorption characteristics in advanced AEMFCs. |
---|---|
ISSN: | 2155-5435 2155-5435 |
DOI: | 10.1021/acscatal.8b03227 |