Climate's watermark in the geometry of stream networks

Branching stream networks are a ubiquitous feature of the Earth's surface, but the processes that shape them, and their dependence on the climate in which they grow, remain poorly understood. Research has mainly focused on climatic controls of channel incision rates, while the climatic influenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2017-03, Vol.44 (5), p.2272-2280
Hauptverfasser: Seybold, Hansjörg, Rothman, Daniel H., Kirchner, James W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Branching stream networks are a ubiquitous feature of the Earth's surface, but the processes that shape them, and their dependence on the climate in which they grow, remain poorly understood. Research has mainly focused on climatic controls of channel incision rates, while the climatic influence on planform geometry has often been overlooked. Here we analyze nearly one million digitally mapped river junctions throughout the contiguous United States and show that branching angles vary systematically with climatic aridity. In arid landscapes, which are thought to be dominated by surface runoff erosion, junction angles average roughly 45° in the driest places. Branching angles are systematically wider in humid regions, averaging roughly 72°, which is the theoretically predicted angle for network growth in a diffusive field such as groundwater seepage. The correlation of mean junction angle with aridity is stronger than with topographic gradient, downstream concavity, or other geometric factors that have been proposed as controls of junction angles. Thus, it may be possible to identify channelization processes from stream network geometry in relict landscapes, such as those on Mars. Key Points Mean branching angles of stream networks vary systematically with climatic aridity Branching angles in arid and humid landscapes average roughly 45 and 72°, respectively Branching angles correlate more strongly with aridity than with geometric factors like topographic gradient or downstream concavity
ISSN:0094-8276
1944-8007
DOI:10.1002/2016GL072089