Band dependence of charge density wave in quasi-one-dimensional Ta2NiSe7 probed by orbital magnetoresistance

Ta2NiSe7 is a quasi-one-dimensional (quasi-1D) transition-metal chalcogenide with Ta and Ni chain structures. An incommensurate charge-density wave (CDW) in this quasi-1D structure was well studied previously using tunnelling spectrum, X-ray, and electron diffraction, whereas its transport property...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2017-07, Vol.111 (5)
Hauptverfasser: He, Jiaming, Zhang, Yiran, Wen, Libin, Yang, Yusen, Liu, Jinyu, Wu, Yueshen, Lian, Hailong, Xing, Hui, Wang, Shun, Mao, Zhiqiang, Liu, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ta2NiSe7 is a quasi-one-dimensional (quasi-1D) transition-metal chalcogenide with Ta and Ni chain structures. An incommensurate charge-density wave (CDW) in this quasi-1D structure was well studied previously using tunnelling spectrum, X-ray, and electron diffraction, whereas its transport property and the relation to the underlying electronic states remain to be explored. Here, we report our results of the magnetoresistance (MR) on Ta2NiSe7. A breakdown of Kohler's rule is found upon entering the CDW state. Concomitantly, a clear change in curvature in the field dependence of MR is observed. We show that the curvature change is well described by the two-band orbital MR, with the hole density being strongly suppressed in the CDW state, indicating that the p orbitals from Se atoms dominate the change in transport through CDW transition.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4990801