Exploring Comparative Energy and Environmental Benefits of Virgin, Recycled, and Bio-Derived PET Bottles

Polyethylene terephthalate (PET) is a common plastic resin used to produce packaging, notably plastic bottles. Most PET bottles are produced from fossil fuel-derived feedstocks. Bio-derived and recycling-based pathways to PET bottles, however, could offer lower greenhouse gas (GHG) emissions than th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2018-08, Vol.6 (8), p.9725-9733
Hauptverfasser: Benavides, Pahola Thathiana, Dunn, Jennifer B, Han, Jeongwoo, Biddy, Mary, Markham, Jennifer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polyethylene terephthalate (PET) is a common plastic resin used to produce packaging, notably plastic bottles. Most PET bottles are produced from fossil fuel-derived feedstocks. Bio-derived and recycling-based pathways to PET bottles, however, could offer lower greenhouse gas (GHG) emissions than the conventional route. In this paper, we use life-cycle analysis to evaluate the GHG emissions, fossil fuel consumption, and water consumption of producing one PET bottle from virgin fossil resources, recycled plastic, and biomass, considering each supply chain stage. We considered two routes to produce bottles from biomass: one in which all PET precursors (ethylene glycol and teraphthalic acid) are bio-derived and one in which only ethylene glycol is bio-derived. Bio-derived and recycled PET bottles offer both GHG emissions and fossil fuel consumption reductions ranging from 12% to 82% and 13% to 56%, respectively, on a cradle-to-grave basis compared to fossil fuel-derived PET bottles assuming PET bottles are landfilled. However, water consumption is lower in the conventional pathway to PET bottles. Water demand is high during feedstock production and conversion in the case of biomass-derived PET and during recycling in the case of bottles made from recycled PET.
ISSN:2168-0485
2168-0485
DOI:10.1021/acssuschemeng.8b00750