Enhanced Fill Factor through Chalcogen Side-Chain Manipulation in Small-Molecule Photovoltaics
The fill factor (FF) of organic photovoltaic (OPV) devices has proven difficult to optimize by synthetic modification of the active layer materials. In this contribution, a series of small-molecule donors (SMDs) incorporating chalcogen atoms of increasing atomic number (Z), namely oxygen, sulfur, an...
Gespeichert in:
Veröffentlicht in: | ACS energy letters 2017-10, Vol.2 (10), p.2415-2421 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The fill factor (FF) of organic photovoltaic (OPV) devices has proven difficult to optimize by synthetic modification of the active layer materials. In this contribution, a series of small-molecule donors (SMDs) incorporating chalcogen atoms of increasing atomic number (Z), namely oxygen, sulfur, and selenium, into the side chains are synthesized and the relationship between the chalcogen Z and the FF of OPV devices is characterized. Larger Z chalcogen atoms are found to consistently enhance FF in bulk-heterojunction OPVs containing PC61BM as the acceptor material. A significant ∼8% FF increase is obtained on moving from O to S to Se across three series of SMDs. The FF enhancement is found to result from the combination of more ordered morphology and decreased charge recombination in blend films for the high-Z-chalcogen SMDs. Because this FF enhancement is found within three series of SMDs, the overall strategy is promising for new SMD materials design. |
---|---|
ISSN: | 2380-8195 2380-8195 |
DOI: | 10.1021/acsenergylett.7b00743 |