Templated Self-Assembly of a PS-Branch-PDMS Bottlebrush Copolymer
The self-assembly of block copolymers (BCPs) with novel architectures offers tremendous opportunities in nanoscale patterning and fabrication. Here, the thin film morphology, annealing kinetics, and topographical templating of an unconventional Janus-type “PS-branch-PDMS” bottlebrush copolymer (BBCP...
Gespeichert in:
Veröffentlicht in: | Nano letters 2018-07, Vol.18 (7), p.4360-4369 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The self-assembly of block copolymers (BCPs) with novel architectures offers tremendous opportunities in nanoscale patterning and fabrication. Here, the thin film morphology, annealing kinetics, and topographical templating of an unconventional Janus-type “PS-branch-PDMS” bottlebrush copolymer (BBCP) are described. In the Janus-type BBCP, each segment of the bottlebrush backbone connects two immiscible side chain blocks. Thin films of a Janus-type BBCP with M n = 609 kg/mol exhibited 22 nm period cylindrical microdomains with long-range order under solvent vapor annealing, and the effects of as-cast film thickness, solvent vapor pressure, and composition of the binary mixture of solvent vapors are described. The dynamic self-assembly process was characterized using in situ grazing-incidence X-ray scattering. Templated self-assembly of the BBCP within lithographically patterned substrates was demonstrated, showing distinct pattern orientation and dimensions that differ from conventional BCPs. Self-consistent field theory is used to elucidate details of the templated self-assembly behavior within confinement. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.8b01389 |