Synthesis of Self-Assembled Porphyrin Nanoparticle Photosensitizers

The use of nanoparticles as a potential building block for photosensitizers has recently become a focus of interest in the field of photocatalysis and photodynamic therapy. Porphyrins and their derivatives are effective photosensitizers due to extended π-conjugated electronic structure, high molar a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2018-04, Vol.12 (4), p.3796-3803
Hauptverfasser: Wang, Dong, Niu, Lijuan, Qiao, Zeng-Ying, Cheng, Dong-Bing, Wang, Jiefei, Zhong, Yong, Bai, Feng, Wang, Hao, Fan, Hongyou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of nanoparticles as a potential building block for photosensitizers has recently become a focus of interest in the field of photocatalysis and photodynamic therapy. Porphyrins and their derivatives are effective photosensitizers due to extended π-conjugated electronic structure, high molar absorption from visible to near-infrared spectrum, and high singlet oxygen quantum yields as well as chemical versatility. In this paper, we report a synthesis of self-assembled porphyrin nanoparticle photosensitizers using zinc meso-tetra­(4-pyridyl)­porphyrin (ZnTPyP) through a confined noncovalent self-assembly process. Scanning electron microscopy reveals formation of monodisperse cubic nanoparticles. UV–vis characterizations reveal that optical absorption of the nanoparticles exhibits a red shift due to noncovalent self-assembly of porphyrins, which not only effectively increase intensity of light absorption but also extend light absorption broadly covering visible light for enhanced photodynamic therapy. Electron spin-resonance spectroscopy (ESR) studies show the resultant porphyrin nanoparticles release a high yield of singlet oxygen. Nitric oxide (NO) coordinates to central metal Zn ions to form stabilized ZnTPyP@NO nanoparticles. We show that under light irradiation ZnTPyP@NO nanoparticles release highly reactive peroxynitrite molecules that exhibit enhanced antibacterial photodynamic therapy (APDT) activity. The ease of the synthesis of self-assembled porphyrin nanoparticles and light-triggered release of highly reactive moieties represent a completely different photosensitizer system for APDT application.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.8b01010