Factorization theorem relating Euclidean and light-cone parton distributions

In a large-momentum nucleon state, the matrix element of a gauge-invariant Euclidean Wilson line operator accessible from lattice QCD can be related to the standard light-cone parton distribution function through the large-momentum effective theory (LaMET) expansion. This relation is given by a fact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2018-09, Vol.98 (5), Article 056004
Hauptverfasser: Izubuchi, Taku, Ji, Xiangdong, Jin, Luchang, Stewart, Iain W., Zhao, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a large-momentum nucleon state, the matrix element of a gauge-invariant Euclidean Wilson line operator accessible from lattice QCD can be related to the standard light-cone parton distribution function through the large-momentum effective theory (LaMET) expansion. This relation is given by a factorization formula with a nontrivial matching coefficient. Using the operator product expansion we derive the large-momentum factorization of the quasiparton distribution function in LaMET, and show that the more recently discussed pseudoparton distribution approach also obeys an equivalent factorization formula. Explicit results for the coefficients are obtained and compared at one loop. We also prove that the matching coefficients in the MS¯ scheme depend on the large partonic momentum rather than the nucleon momentum.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.98.056004