Incorporation of indium on cubic GaN epitaxially induced on a nanofaceted Si(001) substrate by phase transition
The incorporation of In on the non-polar, piezoelectric-free (001) facet of cubic (c-) GaN epitaxially grown over a Si(001) substrate by metal-organic vapor phase epitaxy is reported. Relying on a hexagonal (h-) to c-phase transformation during epitaxy on an 800 nm-wide, Si(111)-faceted v-groove pat...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2015-12, Vol.107 (23) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The incorporation of In on the non-polar, piezoelectric-free (001) facet of cubic (c-) GaN epitaxially grown over a Si(001) substrate by metal-organic vapor phase epitaxy is reported. Relying on a hexagonal (h-) to c-phase transformation during epitaxy on an 800 nm-wide, Si(111)-faceted v-groove patterned into the substrate, the GaN epilayer at cross sectional view retains a triangular c-phase inside a chevron-shaped h-phase that results in a top surface bounded by a (001) facet parallel to Si(001) at the center and (11¯01) facets at both edges. A stack of five, ∼3 nm-thick, InxGa1−xN/GaN quantum wells (QWs) was deposited on the double-phased top surface. The c-phase region up to the QWs keeps extremely small misfit (∼0.002) to the fully relaxed h-GaN underneath it and is in tensile stress implying undefected by the h-c phase interface. The In incorporation on a strained non-polar (001) of c-GaN is comparable with that on totally relaxed semi-polar (11¯01) of h-GaN without noticeable adatom migration across the phase boundary, and sufficient to provide the room-temperature green emission at 496 nm from the c-InxGa1−xN/GaN QWs on Si(001) in photoluminescence. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4936772 |