Electron-hole compensation effect between topologically trivial electrons and nontrivial holes in NbAs
Via angular Shubnikov-de Haas (SdH) quantum oscillations measurements, we determine the Fermi surface topology of NbAs, a Weyl semimetal candidate. The SdH oscillations consist of two frequencies corresponding to two Fermi surface extrema: 20.8 T ( alpha pocket) and 15.6 T ( beta pocket). The analys...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2015-11, Vol.92 (20), Article 205134 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Via angular Shubnikov-de Haas (SdH) quantum oscillations measurements, we determine the Fermi surface topology of NbAs, a Weyl semimetal candidate. The SdH oscillations consist of two frequencies corresponding to two Fermi surface extrema: 20.8 T ( alpha pocket) and 15.6 T ( beta pocket). The analysis, including a Landau fan plot, shows that the beta pocket has a Berry phase of [Pi] and a small effective mass of ~0.033m0, indicative of a nontrivial topology in momentum space, whereas the alpha pocket has a trivial Berry phase of 0 and a heavier effective mass of ~0.066m0. From the effective mass and the beta -pocket frequency, we determine that the Weyl node is 110.5 meV from the chemical potential. An electron-hole compensation effect is discussed in this system, and its impact on magnetotransport properties is addressed. The difference between NbAs and other monopnictide Weyl semimetals is also discussed. |
---|---|
ISSN: | 1098-0121 2469-9950 1550-235X 2469-9969 |
DOI: | 10.1103/PhysRevB.92.205134 |