Electron-hole compensation effect between topologically trivial electrons and nontrivial holes in NbAs

Via angular Shubnikov-de Haas (SdH) quantum oscillations measurements, we determine the Fermi surface topology of NbAs, a Weyl semimetal candidate. The SdH oscillations consist of two frequencies corresponding to two Fermi surface extrema: 20.8 T ( alpha pocket) and 15.6 T ( beta pocket). The analys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2015-11, Vol.92 (20), Article 205134
Hauptverfasser: Luo, Yongkang, Ghimire, N. J., Wartenbe, M., Choi, Hongchul, Neupane, M., McDonald, R. D., Bauer, E. D., Zhu, Jianxin, Thompson, J. D., Ronning, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Via angular Shubnikov-de Haas (SdH) quantum oscillations measurements, we determine the Fermi surface topology of NbAs, a Weyl semimetal candidate. The SdH oscillations consist of two frequencies corresponding to two Fermi surface extrema: 20.8 T ( alpha pocket) and 15.6 T ( beta pocket). The analysis, including a Landau fan plot, shows that the beta pocket has a Berry phase of [Pi] and a small effective mass of ~0.033m0, indicative of a nontrivial topology in momentum space, whereas the alpha pocket has a trivial Berry phase of 0 and a heavier effective mass of ~0.066m0. From the effective mass and the beta -pocket frequency, we determine that the Weyl node is 110.5 meV from the chemical potential. An electron-hole compensation effect is discussed in this system, and its impact on magnetotransport properties is addressed. The difference between NbAs and other monopnictide Weyl semimetals is also discussed.
ISSN:1098-0121
2469-9950
1550-235X
2469-9969
DOI:10.1103/PhysRevB.92.205134