Dense Graphene Monolith for High Volumetric Energy Density Li–S Batteries
Despite the outstanding gravimetric performance of lithium–sulfur (Li–S) batteries, their practical volumetric energy density is normally lower than that of lithium‐ion batteries, mainly due to the low density of nanostructured sulfur as well as the porous carbon hosts. Here, a novel approach is dev...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2018-06, Vol.8 (18), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Despite the outstanding gravimetric performance of lithium–sulfur (Li–S) batteries, their practical volumetric energy density is normally lower than that of lithium‐ion batteries, mainly due to the low density of nanostructured sulfur as well as the porous carbon hosts. Here, a novel approach is developed to fabricate high‐density graphene bulk materials with “ink‐bottle‐like” mesopores by phosphoric acid (H3PO4) activation. These pores can effectively confine the polysulfides due to their unique structure with a wide body and narrow neck, which shows only a 0.05% capacity fade per cycle for 500 cycles (75% capacity retention) for accommodating polysulfides. With a density of 1.16 g cm−3, a hybrid cathode containing 54 wt% sulfur delivers a high volumetric capacity of 653 mA h cm−3. As a result, a device‐level volumetric energy density as high as 408 W h L−1 is achieved with a cathode thickness of 100 µm. This is a periodic yet practical advance to improve the volumetric performance of Li–S batteries from a device perspective. This work suggests a design principle for the real use Li–S batteries although there is a long way ahead to bridge the gap between Li–S batteries and Li–ion batteries in volumetric performance.
High‐density graphene monolith with “ink‐bottle‐like” pores was prepared by H3PO4 activation together with a capillary evaporation‐induced drying method. These pores can effectively accommodate and confine the lithium polysulfides with their wide body and narrow neck, respectively. When used as a carbon host for a Li–S battery, the device exhibits a high volumetric energy density and long‐cycle life. |
---|---|
ISSN: | 1614-6832 1614-6840 |
DOI: | 10.1002/aenm.201703438 |