Levan promotes antiproliferative and pro-apoptotic effects in MCF-7 breast cancer cells mediated by oxidative stress

Exopolysaccharides are high-valued bio-products produced by various microbial species and have been described to possess biological response modifying activities. These bio-products have been effective as therapeutic agents in various human disease conditions. The objective of this study was to exam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2017-09, Vol.102 (C), p.565-570
Hauptverfasser: Queiroz, Eveline A.I.F., Fortes, Zuleica B., da Cunha, Mário A.A., Sarilmiser, Hande Kazak, Barbosa Dekker, Aneli M., Öner, Ebru Toksoy, Dekker, Robert F.H., Khaper, Neelam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Exopolysaccharides are high-valued bio-products produced by various microbial species and have been described to possess biological response modifying activities. These bio-products have been effective as therapeutic agents in various human disease conditions. The objective of this study was to examine the effects of levan (a (2→6)-β-d-fructan) produced on sucrose by the halophilic bacterium, Halomonas smyrnensis AAD6T, in human breast cancer MCF-7 cells. MCF-7 cells were exposed to levan for 24 and 48h. The antiproliferative activity was analyzed by the MTT assay. Oxidative stress was measured by the CM-H2DCFDA assay, and cell apoptosis was analyzed by the caspase-3/7 assay. Cell cycle was analyzed by flow cytometry and gene expression was determined by RT-PCR. Levan showed a time- and concentration-dependent antiproliferative activity, and this effect was associated with an increase in cell apoptosis and oxidative stress. In addition, levan increased the gene expression of p53 and p27. Here we demonstrated that levan exhibited an antiproliferative effect that was mediated by an increase in apoptosis and oxidative stress.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2017.04.035