In Situ Characterization of Cu/CeO2 Nanocatalysts for CO2 Hydrogenation: Morphological Effects of Nanostructured Ceria on the Catalytic Activity

A combination of time-resolved X-ray diffraction (TR-XRD), ambient-pressure X-ray photoelectron spectroscopy (AP-XPS), and diffuse reflectance infrared Fourier transform spectroscopy was used to carry out in situ characterization of Cu/CeO2 nanocatalysts during the hydrogenation of CO2. Morphologica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2018-06, Vol.122 (24), p.12934-12943
Hauptverfasser: Lin, Lili, Yao, Siyu, Liu, Zongyuan, Zhang, Feng, Li, Na, Vovchok, Dimitriy, Martínez-Arias, Arturo, Castañeda, Rafael, Lin, Jinying, Senanayake, Sanjaya D, Su, Dong, Ma, Ding, Rodriguez, José A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A combination of time-resolved X-ray diffraction (TR-XRD), ambient-pressure X-ray photoelectron spectroscopy (AP-XPS), and diffuse reflectance infrared Fourier transform spectroscopy was used to carry out in situ characterization of Cu/CeO2 nanocatalysts during the hydrogenation of CO2. Morphological effects of the ceria supports on the catalytic performances were investigated by examining the behavior of copper/ceria nanorods (NR) and nanospheres. At atmospheric pressures, the hydrogenation of CO2 on the copper/ceria catalysts produced mainly CO through the reverse water–gas shift (RWGS) reaction and a negligible amount of methanol. The Cu/CeO2-NR catalyst displayed the higher activity, which demonstrates that the RWGS is a structure-sensitive reaction. In situ TR-XRD and AP-XPS characterization showed significant changes in the chemical state of the catalysts under reaction conditions, with the copper being fully reduced and a partial Ce4+ → Ce3+ transformation occurring. A more effective CO2 dissociative activation at high temperature and a preferential formation of active bidentate carbonate and formate intermediates over CeO2(110) terminations are probably the main reasons for the better performance of the Cu/CeO2-NR catalyst in the RWGS reaction.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.8b03596