Dual Nature of Magnetism in a Uranium Heavy-Fermion System
The duality between the localized and itinerant nature of magnetism in 5f-electron systems has been a long-standing puzzle. Here, we report inelastic neutron scattering measurements, which reveal both local and itinerant aspects of magnetism in a single-crystalline system of UPt_{2}Si_{2}. In the an...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2018-07, Vol.121 (5), p.057201-057201, Article 057201 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The duality between the localized and itinerant nature of magnetism in 5f-electron systems has been a long-standing puzzle. Here, we report inelastic neutron scattering measurements, which reveal both local and itinerant aspects of magnetism in a single-crystalline system of UPt_{2}Si_{2}. In the antiferromagnetic state, we observe a broad continuum of diffuse magnetic scattering with a resonancelike gap of ≈7 meV and the surprising absence of coherent spin waves, suggestive of itinerant magnetism. While the gap closes above the Néel temperature, strong dynamic spin correlations persist to a high temperature. Nevertheless, the size and temperature dependence of the total magnetic spectral weight can be well described by a local moment with J=4. Furthermore, polarized neutron measurements reveal that the magnetic fluctuations are mostly transverse, with little or none of the longitudinal component expected for itinerant moments. These results suggest that a dual description of local and itinerant magnetism is required to understand UPt_{2}Si_{2} and, by extension, other 5f systems, in general. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.121.057201 |