Electronic and transport properties of Li-doped NiO epitaxial thin films
NiO is a p-type wide bandgap semiconductor of use in various electronic devices ranging from solar cells to transparent transistors. Understanding and improving its optical and transport properties have been of considerable interest. In this work, we have investigated the effect of Li doping on the...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2018, Vol.6 (9), p.2275-2282 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2282 |
---|---|
container_issue | 9 |
container_start_page | 2275 |
container_title | Journal of materials chemistry. C, Materials for optical and electronic devices |
container_volume | 6 |
creator | Zhang, J. Y Li, W. W Hoye, R. L. Z MacManus-Driscoll, J. L Budde, M Bierwagen, O Wang, L Du, Y Wahila, M. J Piper, L. F. J Lee, T.-L Edwards, H. J Dhanak, V. R Zhang, K. H. L |
description | NiO is a p-type wide bandgap semiconductor of use in various electronic devices ranging from solar cells to transparent transistors. Understanding and improving its optical and transport properties have been of considerable interest. In this work, we have investigated the effect of Li doping on the electronic, optical and transport properties of NiO epitaxial thin films grown by pulsed laser deposition. We show that Li doping significantly increases the p-type conductivity of NiO, but all the films have relatively low room-temperature mobilities ( |
doi_str_mv | 10.1039/c7tc05331b |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1455308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010815163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-e4bcd02058448326caeacaa693c3937ff21d50ba5acc816a37299cf4ae1526413</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWLQX70LUm7CabJL9OOpSrVDspZ5DOpvQlO1mTVLQ_97oSr05l5lhfgzvPYQuKLmjhNX3UEYggjG6PkKTnAiSlYLx48OcF6doGsKWpKpoURX1BM1nnYboXW8Bq77F0as-DM5HPHg3aB-tDtgZvLBZm_YWv9ol1oON6sOqDseN7bGx3S6coxOjuqCnv_0MvT3NVs08WyyfX5qHRQac05hpvoaWJEEV5xXLC1BagVJFzYDVrDQmp60gayUUQNKoWJnXNRiuNE36OWVn6Hr860K0MoCNGjbg-j7ZkJQLwUiVoJsRSibe9zpEuXV73yddMic0mRe0YIm6HSnwLgSvjRy83Sn_KSmR34nKplw1P4k-JvhyhH2AA_eXeLpf_XeXQ2vYFzxRfGk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010815163</pqid></control><display><type>article</type><title>Electronic and transport properties of Li-doped NiO epitaxial thin films</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zhang, J. Y ; Li, W. W ; Hoye, R. L. Z ; MacManus-Driscoll, J. L ; Budde, M ; Bierwagen, O ; Wang, L ; Du, Y ; Wahila, M. J ; Piper, L. F. J ; Lee, T.-L ; Edwards, H. J ; Dhanak, V. R ; Zhang, K. H. L</creator><creatorcontrib>Zhang, J. Y ; Li, W. W ; Hoye, R. L. Z ; MacManus-Driscoll, J. L ; Budde, M ; Bierwagen, O ; Wang, L ; Du, Y ; Wahila, M. J ; Piper, L. F. J ; Lee, T.-L ; Edwards, H. J ; Dhanak, V. R ; Zhang, K. H. L ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>NiO is a p-type wide bandgap semiconductor of use in various electronic devices ranging from solar cells to transparent transistors. Understanding and improving its optical and transport properties have been of considerable interest. In this work, we have investigated the effect of Li doping on the electronic, optical and transport properties of NiO epitaxial thin films grown by pulsed laser deposition. We show that Li doping significantly increases the p-type conductivity of NiO, but all the films have relatively low room-temperature mobilities (<0.05 cm
2
V
−1
s
−1
). The conduction mechanism is better described by small-polaron hoping model in the temperature range of 200 K <
T
< 330 K, and variable range hopping at
T
< 200 K. A combination of X-ray photoemission and O K-edge X-ray absorption spectroscopic investigations reveal that the Fermi level gradually shifts toward the valence band maximum (VBM) and a new hole state develops with Li doping. Both the VBM and hole states are composed of primarily Zhang-Rice bound states, which accounts for the small polaron character (low mobility) of hole conduction. Our work provides guidelines for the search for p-type oxide materials and device optimization.
NiO is a p-type wide bandgap semiconductor of use in various electronic devices ranging from solar cells to transparent transistors. This work reports the controlling of conductivity and increase of work functions by Li doping.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/c7tc05331b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Doping ; Electronic devices ; Environmental Molecular Sciences Laboratory ; Epitaxial growth ; hole transport layer ; Nickel oxides ; NiO ; Optical properties ; oxide semiconductor ; P-type semiconductors ; Photoelectric emission ; Photovoltaic cells ; Polarons ; Pulsed laser deposition ; Semiconductor devices ; Solar cells ; Thin films ; Transistors ; Transparent conducting oxides ; Transport properties ; Valence band ; Wide bandgap semiconductors</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2018, Vol.6 (9), p.2275-2282</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-e4bcd02058448326caeacaa693c3937ff21d50ba5acc816a37299cf4ae1526413</citedby><cites>FETCH-LOGICAL-c441t-e4bcd02058448326caeacaa693c3937ff21d50ba5acc816a37299cf4ae1526413</cites><orcidid>0000-0002-7675-0065 ; 0000-0002-3421-3210 ; 0000-0001-9352-6236 ; 0000-0002-8668-5375 ; 0000000276750065 ; 0000000234213210 ; 0000000193526236 ; 0000000286685375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1455308$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, J. Y</creatorcontrib><creatorcontrib>Li, W. W</creatorcontrib><creatorcontrib>Hoye, R. L. Z</creatorcontrib><creatorcontrib>MacManus-Driscoll, J. L</creatorcontrib><creatorcontrib>Budde, M</creatorcontrib><creatorcontrib>Bierwagen, O</creatorcontrib><creatorcontrib>Wang, L</creatorcontrib><creatorcontrib>Du, Y</creatorcontrib><creatorcontrib>Wahila, M. J</creatorcontrib><creatorcontrib>Piper, L. F. J</creatorcontrib><creatorcontrib>Lee, T.-L</creatorcontrib><creatorcontrib>Edwards, H. J</creatorcontrib><creatorcontrib>Dhanak, V. R</creatorcontrib><creatorcontrib>Zhang, K. H. L</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Electronic and transport properties of Li-doped NiO epitaxial thin films</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>NiO is a p-type wide bandgap semiconductor of use in various electronic devices ranging from solar cells to transparent transistors. Understanding and improving its optical and transport properties have been of considerable interest. In this work, we have investigated the effect of Li doping on the electronic, optical and transport properties of NiO epitaxial thin films grown by pulsed laser deposition. We show that Li doping significantly increases the p-type conductivity of NiO, but all the films have relatively low room-temperature mobilities (<0.05 cm
2
V
−1
s
−1
). The conduction mechanism is better described by small-polaron hoping model in the temperature range of 200 K <
T
< 330 K, and variable range hopping at
T
< 200 K. A combination of X-ray photoemission and O K-edge X-ray absorption spectroscopic investigations reveal that the Fermi level gradually shifts toward the valence band maximum (VBM) and a new hole state develops with Li doping. Both the VBM and hole states are composed of primarily Zhang-Rice bound states, which accounts for the small polaron character (low mobility) of hole conduction. Our work provides guidelines for the search for p-type oxide materials and device optimization.
NiO is a p-type wide bandgap semiconductor of use in various electronic devices ranging from solar cells to transparent transistors. This work reports the controlling of conductivity and increase of work functions by Li doping.</description><subject>Doping</subject><subject>Electronic devices</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>Epitaxial growth</subject><subject>hole transport layer</subject><subject>Nickel oxides</subject><subject>NiO</subject><subject>Optical properties</subject><subject>oxide semiconductor</subject><subject>P-type semiconductors</subject><subject>Photoelectric emission</subject><subject>Photovoltaic cells</subject><subject>Polarons</subject><subject>Pulsed laser deposition</subject><subject>Semiconductor devices</subject><subject>Solar cells</subject><subject>Thin films</subject><subject>Transistors</subject><subject>Transparent conducting oxides</subject><subject>Transport properties</subject><subject>Valence band</subject><subject>Wide bandgap semiconductors</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWLQX70LUm7CabJL9OOpSrVDspZ5DOpvQlO1mTVLQ_97oSr05l5lhfgzvPYQuKLmjhNX3UEYggjG6PkKTnAiSlYLx48OcF6doGsKWpKpoURX1BM1nnYboXW8Bq77F0as-DM5HPHg3aB-tDtgZvLBZm_YWv9ol1oON6sOqDseN7bGx3S6coxOjuqCnv_0MvT3NVs08WyyfX5qHRQac05hpvoaWJEEV5xXLC1BagVJFzYDVrDQmp60gayUUQNKoWJnXNRiuNE36OWVn6Hr860K0MoCNGjbg-j7ZkJQLwUiVoJsRSibe9zpEuXV73yddMic0mRe0YIm6HSnwLgSvjRy83Sn_KSmR34nKplw1P4k-JvhyhH2AA_eXeLpf_XeXQ2vYFzxRfGk</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Zhang, J. Y</creator><creator>Li, W. W</creator><creator>Hoye, R. L. Z</creator><creator>MacManus-Driscoll, J. L</creator><creator>Budde, M</creator><creator>Bierwagen, O</creator><creator>Wang, L</creator><creator>Du, Y</creator><creator>Wahila, M. J</creator><creator>Piper, L. F. J</creator><creator>Lee, T.-L</creator><creator>Edwards, H. J</creator><creator>Dhanak, V. R</creator><creator>Zhang, K. H. L</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7675-0065</orcidid><orcidid>https://orcid.org/0000-0002-3421-3210</orcidid><orcidid>https://orcid.org/0000-0001-9352-6236</orcidid><orcidid>https://orcid.org/0000-0002-8668-5375</orcidid><orcidid>https://orcid.org/0000000276750065</orcidid><orcidid>https://orcid.org/0000000234213210</orcidid><orcidid>https://orcid.org/0000000193526236</orcidid><orcidid>https://orcid.org/0000000286685375</orcidid></search><sort><creationdate>2018</creationdate><title>Electronic and transport properties of Li-doped NiO epitaxial thin films</title><author>Zhang, J. Y ; Li, W. W ; Hoye, R. L. Z ; MacManus-Driscoll, J. L ; Budde, M ; Bierwagen, O ; Wang, L ; Du, Y ; Wahila, M. J ; Piper, L. F. J ; Lee, T.-L ; Edwards, H. J ; Dhanak, V. R ; Zhang, K. H. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-e4bcd02058448326caeacaa693c3937ff21d50ba5acc816a37299cf4ae1526413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Doping</topic><topic>Electronic devices</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>Epitaxial growth</topic><topic>hole transport layer</topic><topic>Nickel oxides</topic><topic>NiO</topic><topic>Optical properties</topic><topic>oxide semiconductor</topic><topic>P-type semiconductors</topic><topic>Photoelectric emission</topic><topic>Photovoltaic cells</topic><topic>Polarons</topic><topic>Pulsed laser deposition</topic><topic>Semiconductor devices</topic><topic>Solar cells</topic><topic>Thin films</topic><topic>Transistors</topic><topic>Transparent conducting oxides</topic><topic>Transport properties</topic><topic>Valence band</topic><topic>Wide bandgap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, J. Y</creatorcontrib><creatorcontrib>Li, W. W</creatorcontrib><creatorcontrib>Hoye, R. L. Z</creatorcontrib><creatorcontrib>MacManus-Driscoll, J. L</creatorcontrib><creatorcontrib>Budde, M</creatorcontrib><creatorcontrib>Bierwagen, O</creatorcontrib><creatorcontrib>Wang, L</creatorcontrib><creatorcontrib>Du, Y</creatorcontrib><creatorcontrib>Wahila, M. J</creatorcontrib><creatorcontrib>Piper, L. F. J</creatorcontrib><creatorcontrib>Lee, T.-L</creatorcontrib><creatorcontrib>Edwards, H. J</creatorcontrib><creatorcontrib>Dhanak, V. R</creatorcontrib><creatorcontrib>Zhang, K. H. L</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, J. Y</au><au>Li, W. W</au><au>Hoye, R. L. Z</au><au>MacManus-Driscoll, J. L</au><au>Budde, M</au><au>Bierwagen, O</au><au>Wang, L</au><au>Du, Y</au><au>Wahila, M. J</au><au>Piper, L. F. J</au><au>Lee, T.-L</au><au>Edwards, H. J</au><au>Dhanak, V. R</au><au>Zhang, K. H. L</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic and transport properties of Li-doped NiO epitaxial thin films</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2018</date><risdate>2018</risdate><volume>6</volume><issue>9</issue><spage>2275</spage><epage>2282</epage><pages>2275-2282</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>NiO is a p-type wide bandgap semiconductor of use in various electronic devices ranging from solar cells to transparent transistors. Understanding and improving its optical and transport properties have been of considerable interest. In this work, we have investigated the effect of Li doping on the electronic, optical and transport properties of NiO epitaxial thin films grown by pulsed laser deposition. We show that Li doping significantly increases the p-type conductivity of NiO, but all the films have relatively low room-temperature mobilities (<0.05 cm
2
V
−1
s
−1
). The conduction mechanism is better described by small-polaron hoping model in the temperature range of 200 K <
T
< 330 K, and variable range hopping at
T
< 200 K. A combination of X-ray photoemission and O K-edge X-ray absorption spectroscopic investigations reveal that the Fermi level gradually shifts toward the valence band maximum (VBM) and a new hole state develops with Li doping. Both the VBM and hole states are composed of primarily Zhang-Rice bound states, which accounts for the small polaron character (low mobility) of hole conduction. Our work provides guidelines for the search for p-type oxide materials and device optimization.
NiO is a p-type wide bandgap semiconductor of use in various electronic devices ranging from solar cells to transparent transistors. This work reports the controlling of conductivity and increase of work functions by Li doping.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c7tc05331b</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7675-0065</orcidid><orcidid>https://orcid.org/0000-0002-3421-3210</orcidid><orcidid>https://orcid.org/0000-0001-9352-6236</orcidid><orcidid>https://orcid.org/0000-0002-8668-5375</orcidid><orcidid>https://orcid.org/0000000276750065</orcidid><orcidid>https://orcid.org/0000000234213210</orcidid><orcidid>https://orcid.org/0000000193526236</orcidid><orcidid>https://orcid.org/0000000286685375</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7526 |
ispartof | Journal of materials chemistry. C, Materials for optical and electronic devices, 2018, Vol.6 (9), p.2275-2282 |
issn | 2050-7526 2050-7534 |
language | eng |
recordid | cdi_osti_scitechconnect_1455308 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Doping Electronic devices Environmental Molecular Sciences Laboratory Epitaxial growth hole transport layer Nickel oxides NiO Optical properties oxide semiconductor P-type semiconductors Photoelectric emission Photovoltaic cells Polarons Pulsed laser deposition Semiconductor devices Solar cells Thin films Transistors Transparent conducting oxides Transport properties Valence band Wide bandgap semiconductors |
title | Electronic and transport properties of Li-doped NiO epitaxial thin films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A34%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20and%20transport%20properties%20of%20Li-doped%20NiO%20epitaxial%20thin%20films&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Zhang,%20J.%20Y&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2018&rft.volume=6&rft.issue=9&rft.spage=2275&rft.epage=2282&rft.pages=2275-2282&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/c7tc05331b&rft_dat=%3Cproquest_osti_%3E2010815163%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010815163&rft_id=info:pmid/&rfr_iscdi=true |