Numerical Investigation of the Ability of Salt Tracers to Represent the Residence Time Distribution of Fluidized Catalytic Cracking Particles

For a long time, salt tracers have been used to measure the residence time distribution (RTD) of fluidized catalytic cracking (FCC) particles. However, due to limitations in experimental measurements and simulation methods, the ability of salt tracers to faithfully represent RTDs has never been dire...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2017-11, Vol.56 (46), p.13642-13653
Hauptverfasser: Lu, Liqiang, Gao, Xi, Li, Tingwen, Benyahia, Sofiane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13653
container_issue 46
container_start_page 13642
container_title Industrial & engineering chemistry research
container_volume 56
creator Lu, Liqiang
Gao, Xi
Li, Tingwen
Benyahia, Sofiane
description For a long time, salt tracers have been used to measure the residence time distribution (RTD) of fluidized catalytic cracking (FCC) particles. However, due to limitations in experimental measurements and simulation methods, the ability of salt tracers to faithfully represent RTDs has never been directly investigated. Our current simulation results using coarse-grained computational fluid dynamic coupled with discrete element method (CFD-DEM) with filtered drag models show that the residence time of salt tracers with the same terminal velocity as FCC particles is slightly larger than that of FCC particles. This research also demonstrates the ability of filtered drag models to predict the correct RTD curve for FCC particles while the homogeneous drag model may only be used in the dilute riser flow of Geldart type B particles. Thus, the RTD of large-scale reactors can be efficiently investigated with our proposed numerical method as well as by using the old-fashioned salt tracer technology.
doi_str_mv 10.1021/acs.iecr.7b03773
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1440337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b63200098</sourcerecordid><originalsourceid>FETCH-LOGICAL-a452t-7e3b5b9caeb06d7d76e50d85ab21f862997387dd1f10b50944da9536bdbbbf0c3</originalsourceid><addsrcrecordid>eNp1kE9PwkAUxDdGExG9e9x4tvi27bLtkaAoCVGDeG72zysslpbsbk3wO_idLYJHTy-T95tJZgi5ZjBgELM7qf3AonYDoSARIjkhPcZjiDik_JT0IMuyiGcZPycX3q8BgPM07ZHv53aDzmpZ0Wn9iT7YpQy2qWlT0rBCOlK2smG3l2-yCnThpEbnaWjoHLcOPdbhF5yjtwZrjXRhN0jvrQ_OqvYva1K11tgvNHQsg6x2wWo67rI-bL2kr9J1ukJ_Sc5KWXm8Ot4-eZ88LMZP0ezlcToezSKZ8jhEAhPFVa4lKhgaYcQQOZiMSxWzMhvGeS6STBjDSgaKQ56mRuY8GSqjlCpBJ31yc8htusKF1zagXummrlGHgqUpJInoIDhA2jXeOyyLrbMb6XYFg2K_edFtXuw3L46bd5bbg2X_WTetq7sW_-M_8jGIag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical Investigation of the Ability of Salt Tracers to Represent the Residence Time Distribution of Fluidized Catalytic Cracking Particles</title><source>American Chemical Society Journals</source><creator>Lu, Liqiang ; Gao, Xi ; Li, Tingwen ; Benyahia, Sofiane</creator><creatorcontrib>Lu, Liqiang ; Gao, Xi ; Li, Tingwen ; Benyahia, Sofiane ; National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV (United States) ; Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)</creatorcontrib><description>For a long time, salt tracers have been used to measure the residence time distribution (RTD) of fluidized catalytic cracking (FCC) particles. However, due to limitations in experimental measurements and simulation methods, the ability of salt tracers to faithfully represent RTDs has never been directly investigated. Our current simulation results using coarse-grained computational fluid dynamic coupled with discrete element method (CFD-DEM) with filtered drag models show that the residence time of salt tracers with the same terminal velocity as FCC particles is slightly larger than that of FCC particles. This research also demonstrates the ability of filtered drag models to predict the correct RTD curve for FCC particles while the homogeneous drag model may only be used in the dilute riser flow of Geldart type B particles. Thus, the RTD of large-scale reactors can be efficiently investigated with our proposed numerical method as well as by using the old-fashioned salt tracer technology.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.7b03773</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>circulating fluidized bed ; coarse grained particle method ; discrete element method ; ENGINEERING ; filtered drag model ; GENERAL STUDIES OF NUCLEAR REACTORS ; MATHEMATICS AND COMPUTING ; residence time distribution</subject><ispartof>Industrial &amp; engineering chemistry research, 2017-11, Vol.56 (46), p.13642-13653</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a452t-7e3b5b9caeb06d7d76e50d85ab21f862997387dd1f10b50944da9536bdbbbf0c3</citedby><cites>FETCH-LOGICAL-a452t-7e3b5b9caeb06d7d76e50d85ab21f862997387dd1f10b50944da9536bdbbbf0c3</cites><orcidid>0000-0002-3305-8781 ; 0000-0002-5101-1688 ; 0000-0001-5193-5832 ; 0000000233058781 ; 0000000251011688 ; 0000000151935832</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.7b03773$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.7b03773$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1440337$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Liqiang</creatorcontrib><creatorcontrib>Gao, Xi</creatorcontrib><creatorcontrib>Li, Tingwen</creatorcontrib><creatorcontrib>Benyahia, Sofiane</creatorcontrib><creatorcontrib>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV (United States)</creatorcontrib><creatorcontrib>Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)</creatorcontrib><title>Numerical Investigation of the Ability of Salt Tracers to Represent the Residence Time Distribution of Fluidized Catalytic Cracking Particles</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>For a long time, salt tracers have been used to measure the residence time distribution (RTD) of fluidized catalytic cracking (FCC) particles. However, due to limitations in experimental measurements and simulation methods, the ability of salt tracers to faithfully represent RTDs has never been directly investigated. Our current simulation results using coarse-grained computational fluid dynamic coupled with discrete element method (CFD-DEM) with filtered drag models show that the residence time of salt tracers with the same terminal velocity as FCC particles is slightly larger than that of FCC particles. This research also demonstrates the ability of filtered drag models to predict the correct RTD curve for FCC particles while the homogeneous drag model may only be used in the dilute riser flow of Geldart type B particles. Thus, the RTD of large-scale reactors can be efficiently investigated with our proposed numerical method as well as by using the old-fashioned salt tracer technology.</description><subject>circulating fluidized bed</subject><subject>coarse grained particle method</subject><subject>discrete element method</subject><subject>ENGINEERING</subject><subject>filtered drag model</subject><subject>GENERAL STUDIES OF NUCLEAR REACTORS</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>residence time distribution</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PwkAUxDdGExG9e9x4tvi27bLtkaAoCVGDeG72zysslpbsbk3wO_idLYJHTy-T95tJZgi5ZjBgELM7qf3AonYDoSARIjkhPcZjiDik_JT0IMuyiGcZPycX3q8BgPM07ZHv53aDzmpZ0Wn9iT7YpQy2qWlT0rBCOlK2smG3l2-yCnThpEbnaWjoHLcOPdbhF5yjtwZrjXRhN0jvrQ_OqvYva1K11tgvNHQsg6x2wWo67rI-bL2kr9J1ukJ_Sc5KWXm8Ot4-eZ88LMZP0ezlcToezSKZ8jhEAhPFVa4lKhgaYcQQOZiMSxWzMhvGeS6STBjDSgaKQ56mRuY8GSqjlCpBJ31yc8htusKF1zagXummrlGHgqUpJInoIDhA2jXeOyyLrbMb6XYFg2K_edFtXuw3L46bd5bbg2X_WTetq7sW_-M_8jGIag</recordid><startdate>20171122</startdate><enddate>20171122</enddate><creator>Lu, Liqiang</creator><creator>Gao, Xi</creator><creator>Li, Tingwen</creator><creator>Benyahia, Sofiane</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3305-8781</orcidid><orcidid>https://orcid.org/0000-0002-5101-1688</orcidid><orcidid>https://orcid.org/0000-0001-5193-5832</orcidid><orcidid>https://orcid.org/0000000233058781</orcidid><orcidid>https://orcid.org/0000000251011688</orcidid><orcidid>https://orcid.org/0000000151935832</orcidid></search><sort><creationdate>20171122</creationdate><title>Numerical Investigation of the Ability of Salt Tracers to Represent the Residence Time Distribution of Fluidized Catalytic Cracking Particles</title><author>Lu, Liqiang ; Gao, Xi ; Li, Tingwen ; Benyahia, Sofiane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a452t-7e3b5b9caeb06d7d76e50d85ab21f862997387dd1f10b50944da9536bdbbbf0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>circulating fluidized bed</topic><topic>coarse grained particle method</topic><topic>discrete element method</topic><topic>ENGINEERING</topic><topic>filtered drag model</topic><topic>GENERAL STUDIES OF NUCLEAR REACTORS</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>residence time distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Liqiang</creatorcontrib><creatorcontrib>Gao, Xi</creatorcontrib><creatorcontrib>Li, Tingwen</creatorcontrib><creatorcontrib>Benyahia, Sofiane</creatorcontrib><creatorcontrib>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV (United States)</creatorcontrib><creatorcontrib>Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Liqiang</au><au>Gao, Xi</au><au>Li, Tingwen</au><au>Benyahia, Sofiane</au><aucorp>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV (United States)</aucorp><aucorp>Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Investigation of the Ability of Salt Tracers to Represent the Residence Time Distribution of Fluidized Catalytic Cracking Particles</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2017-11-22</date><risdate>2017</risdate><volume>56</volume><issue>46</issue><spage>13642</spage><epage>13653</epage><pages>13642-13653</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>For a long time, salt tracers have been used to measure the residence time distribution (RTD) of fluidized catalytic cracking (FCC) particles. However, due to limitations in experimental measurements and simulation methods, the ability of salt tracers to faithfully represent RTDs has never been directly investigated. Our current simulation results using coarse-grained computational fluid dynamic coupled with discrete element method (CFD-DEM) with filtered drag models show that the residence time of salt tracers with the same terminal velocity as FCC particles is slightly larger than that of FCC particles. This research also demonstrates the ability of filtered drag models to predict the correct RTD curve for FCC particles while the homogeneous drag model may only be used in the dilute riser flow of Geldart type B particles. Thus, the RTD of large-scale reactors can be efficiently investigated with our proposed numerical method as well as by using the old-fashioned salt tracer technology.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.7b03773</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3305-8781</orcidid><orcidid>https://orcid.org/0000-0002-5101-1688</orcidid><orcidid>https://orcid.org/0000-0001-5193-5832</orcidid><orcidid>https://orcid.org/0000000233058781</orcidid><orcidid>https://orcid.org/0000000251011688</orcidid><orcidid>https://orcid.org/0000000151935832</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2017-11, Vol.56 (46), p.13642-13653
issn 0888-5885
1520-5045
language eng
recordid cdi_osti_scitechconnect_1440337
source American Chemical Society Journals
subjects circulating fluidized bed
coarse grained particle method
discrete element method
ENGINEERING
filtered drag model
GENERAL STUDIES OF NUCLEAR REACTORS
MATHEMATICS AND COMPUTING
residence time distribution
title Numerical Investigation of the Ability of Salt Tracers to Represent the Residence Time Distribution of Fluidized Catalytic Cracking Particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A49%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Investigation%20of%20the%20Ability%20of%20Salt%20Tracers%20to%20Represent%20the%20Residence%20Time%20Distribution%20of%20Fluidized%20Catalytic%20Cracking%20Particles&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Lu,%20Liqiang&rft.aucorp=National%20Energy%20Technology%20Laboratory%20(NETL),%20Pittsburgh,%20PA,%20Morgantown,%20WV%20(United%20States)&rft.date=2017-11-22&rft.volume=56&rft.issue=46&rft.spage=13642&rft.epage=13653&rft.pages=13642-13653&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.7b03773&rft_dat=%3Cacs_osti_%3Eb63200098%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true