Numerical Investigation of the Ability of Salt Tracers to Represent the Residence Time Distribution of Fluidized Catalytic Cracking Particles
For a long time, salt tracers have been used to measure the residence time distribution (RTD) of fluidized catalytic cracking (FCC) particles. However, due to limitations in experimental measurements and simulation methods, the ability of salt tracers to faithfully represent RTDs has never been dire...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2017-11, Vol.56 (46), p.13642-13653 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13653 |
---|---|
container_issue | 46 |
container_start_page | 13642 |
container_title | Industrial & engineering chemistry research |
container_volume | 56 |
creator | Lu, Liqiang Gao, Xi Li, Tingwen Benyahia, Sofiane |
description | For a long time, salt tracers have been used to measure the residence time distribution (RTD) of fluidized catalytic cracking (FCC) particles. However, due to limitations in experimental measurements and simulation methods, the ability of salt tracers to faithfully represent RTDs has never been directly investigated. Our current simulation results using coarse-grained computational fluid dynamic coupled with discrete element method (CFD-DEM) with filtered drag models show that the residence time of salt tracers with the same terminal velocity as FCC particles is slightly larger than that of FCC particles. This research also demonstrates the ability of filtered drag models to predict the correct RTD curve for FCC particles while the homogeneous drag model may only be used in the dilute riser flow of Geldart type B particles. Thus, the RTD of large-scale reactors can be efficiently investigated with our proposed numerical method as well as by using the old-fashioned salt tracer technology. |
doi_str_mv | 10.1021/acs.iecr.7b03773 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1440337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b63200098</sourcerecordid><originalsourceid>FETCH-LOGICAL-a452t-7e3b5b9caeb06d7d76e50d85ab21f862997387dd1f10b50944da9536bdbbbf0c3</originalsourceid><addsrcrecordid>eNp1kE9PwkAUxDdGExG9e9x4tvi27bLtkaAoCVGDeG72zysslpbsbk3wO_idLYJHTy-T95tJZgi5ZjBgELM7qf3AonYDoSARIjkhPcZjiDik_JT0IMuyiGcZPycX3q8BgPM07ZHv53aDzmpZ0Wn9iT7YpQy2qWlT0rBCOlK2smG3l2-yCnThpEbnaWjoHLcOPdbhF5yjtwZrjXRhN0jvrQ_OqvYva1K11tgvNHQsg6x2wWo67rI-bL2kr9J1ukJ_Sc5KWXm8Ot4-eZ88LMZP0ezlcToezSKZ8jhEAhPFVa4lKhgaYcQQOZiMSxWzMhvGeS6STBjDSgaKQ56mRuY8GSqjlCpBJ31yc8htusKF1zagXummrlGHgqUpJInoIDhA2jXeOyyLrbMb6XYFg2K_edFtXuw3L46bd5bbg2X_WTetq7sW_-M_8jGIag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical Investigation of the Ability of Salt Tracers to Represent the Residence Time Distribution of Fluidized Catalytic Cracking Particles</title><source>American Chemical Society Journals</source><creator>Lu, Liqiang ; Gao, Xi ; Li, Tingwen ; Benyahia, Sofiane</creator><creatorcontrib>Lu, Liqiang ; Gao, Xi ; Li, Tingwen ; Benyahia, Sofiane ; National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV (United States) ; Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)</creatorcontrib><description>For a long time, salt tracers have been used to measure the residence time distribution (RTD) of fluidized catalytic cracking (FCC) particles. However, due to limitations in experimental measurements and simulation methods, the ability of salt tracers to faithfully represent RTDs has never been directly investigated. Our current simulation results using coarse-grained computational fluid dynamic coupled with discrete element method (CFD-DEM) with filtered drag models show that the residence time of salt tracers with the same terminal velocity as FCC particles is slightly larger than that of FCC particles. This research also demonstrates the ability of filtered drag models to predict the correct RTD curve for FCC particles while the homogeneous drag model may only be used in the dilute riser flow of Geldart type B particles. Thus, the RTD of large-scale reactors can be efficiently investigated with our proposed numerical method as well as by using the old-fashioned salt tracer technology.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.7b03773</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>circulating fluidized bed ; coarse grained particle method ; discrete element method ; ENGINEERING ; filtered drag model ; GENERAL STUDIES OF NUCLEAR REACTORS ; MATHEMATICS AND COMPUTING ; residence time distribution</subject><ispartof>Industrial & engineering chemistry research, 2017-11, Vol.56 (46), p.13642-13653</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a452t-7e3b5b9caeb06d7d76e50d85ab21f862997387dd1f10b50944da9536bdbbbf0c3</citedby><cites>FETCH-LOGICAL-a452t-7e3b5b9caeb06d7d76e50d85ab21f862997387dd1f10b50944da9536bdbbbf0c3</cites><orcidid>0000-0002-3305-8781 ; 0000-0002-5101-1688 ; 0000-0001-5193-5832 ; 0000000233058781 ; 0000000251011688 ; 0000000151935832</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.7b03773$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.7b03773$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1440337$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Liqiang</creatorcontrib><creatorcontrib>Gao, Xi</creatorcontrib><creatorcontrib>Li, Tingwen</creatorcontrib><creatorcontrib>Benyahia, Sofiane</creatorcontrib><creatorcontrib>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV (United States)</creatorcontrib><creatorcontrib>Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)</creatorcontrib><title>Numerical Investigation of the Ability of Salt Tracers to Represent the Residence Time Distribution of Fluidized Catalytic Cracking Particles</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>For a long time, salt tracers have been used to measure the residence time distribution (RTD) of fluidized catalytic cracking (FCC) particles. However, due to limitations in experimental measurements and simulation methods, the ability of salt tracers to faithfully represent RTDs has never been directly investigated. Our current simulation results using coarse-grained computational fluid dynamic coupled with discrete element method (CFD-DEM) with filtered drag models show that the residence time of salt tracers with the same terminal velocity as FCC particles is slightly larger than that of FCC particles. This research also demonstrates the ability of filtered drag models to predict the correct RTD curve for FCC particles while the homogeneous drag model may only be used in the dilute riser flow of Geldart type B particles. Thus, the RTD of large-scale reactors can be efficiently investigated with our proposed numerical method as well as by using the old-fashioned salt tracer technology.</description><subject>circulating fluidized bed</subject><subject>coarse grained particle method</subject><subject>discrete element method</subject><subject>ENGINEERING</subject><subject>filtered drag model</subject><subject>GENERAL STUDIES OF NUCLEAR REACTORS</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>residence time distribution</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PwkAUxDdGExG9e9x4tvi27bLtkaAoCVGDeG72zysslpbsbk3wO_idLYJHTy-T95tJZgi5ZjBgELM7qf3AonYDoSARIjkhPcZjiDik_JT0IMuyiGcZPycX3q8BgPM07ZHv53aDzmpZ0Wn9iT7YpQy2qWlT0rBCOlK2smG3l2-yCnThpEbnaWjoHLcOPdbhF5yjtwZrjXRhN0jvrQ_OqvYva1K11tgvNHQsg6x2wWo67rI-bL2kr9J1ukJ_Sc5KWXm8Ot4-eZ88LMZP0ezlcToezSKZ8jhEAhPFVa4lKhgaYcQQOZiMSxWzMhvGeS6STBjDSgaKQ56mRuY8GSqjlCpBJ31yc8htusKF1zagXummrlGHgqUpJInoIDhA2jXeOyyLrbMb6XYFg2K_edFtXuw3L46bd5bbg2X_WTetq7sW_-M_8jGIag</recordid><startdate>20171122</startdate><enddate>20171122</enddate><creator>Lu, Liqiang</creator><creator>Gao, Xi</creator><creator>Li, Tingwen</creator><creator>Benyahia, Sofiane</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3305-8781</orcidid><orcidid>https://orcid.org/0000-0002-5101-1688</orcidid><orcidid>https://orcid.org/0000-0001-5193-5832</orcidid><orcidid>https://orcid.org/0000000233058781</orcidid><orcidid>https://orcid.org/0000000251011688</orcidid><orcidid>https://orcid.org/0000000151935832</orcidid></search><sort><creationdate>20171122</creationdate><title>Numerical Investigation of the Ability of Salt Tracers to Represent the Residence Time Distribution of Fluidized Catalytic Cracking Particles</title><author>Lu, Liqiang ; Gao, Xi ; Li, Tingwen ; Benyahia, Sofiane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a452t-7e3b5b9caeb06d7d76e50d85ab21f862997387dd1f10b50944da9536bdbbbf0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>circulating fluidized bed</topic><topic>coarse grained particle method</topic><topic>discrete element method</topic><topic>ENGINEERING</topic><topic>filtered drag model</topic><topic>GENERAL STUDIES OF NUCLEAR REACTORS</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>residence time distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Liqiang</creatorcontrib><creatorcontrib>Gao, Xi</creatorcontrib><creatorcontrib>Li, Tingwen</creatorcontrib><creatorcontrib>Benyahia, Sofiane</creatorcontrib><creatorcontrib>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV (United States)</creatorcontrib><creatorcontrib>Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Liqiang</au><au>Gao, Xi</au><au>Li, Tingwen</au><au>Benyahia, Sofiane</au><aucorp>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV (United States)</aucorp><aucorp>Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Investigation of the Ability of Salt Tracers to Represent the Residence Time Distribution of Fluidized Catalytic Cracking Particles</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2017-11-22</date><risdate>2017</risdate><volume>56</volume><issue>46</issue><spage>13642</spage><epage>13653</epage><pages>13642-13653</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>For a long time, salt tracers have been used to measure the residence time distribution (RTD) of fluidized catalytic cracking (FCC) particles. However, due to limitations in experimental measurements and simulation methods, the ability of salt tracers to faithfully represent RTDs has never been directly investigated. Our current simulation results using coarse-grained computational fluid dynamic coupled with discrete element method (CFD-DEM) with filtered drag models show that the residence time of salt tracers with the same terminal velocity as FCC particles is slightly larger than that of FCC particles. This research also demonstrates the ability of filtered drag models to predict the correct RTD curve for FCC particles while the homogeneous drag model may only be used in the dilute riser flow of Geldart type B particles. Thus, the RTD of large-scale reactors can be efficiently investigated with our proposed numerical method as well as by using the old-fashioned salt tracer technology.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.7b03773</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3305-8781</orcidid><orcidid>https://orcid.org/0000-0002-5101-1688</orcidid><orcidid>https://orcid.org/0000-0001-5193-5832</orcidid><orcidid>https://orcid.org/0000000233058781</orcidid><orcidid>https://orcid.org/0000000251011688</orcidid><orcidid>https://orcid.org/0000000151935832</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2017-11, Vol.56 (46), p.13642-13653 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_osti_scitechconnect_1440337 |
source | American Chemical Society Journals |
subjects | circulating fluidized bed coarse grained particle method discrete element method ENGINEERING filtered drag model GENERAL STUDIES OF NUCLEAR REACTORS MATHEMATICS AND COMPUTING residence time distribution |
title | Numerical Investigation of the Ability of Salt Tracers to Represent the Residence Time Distribution of Fluidized Catalytic Cracking Particles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A49%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Investigation%20of%20the%20Ability%20of%20Salt%20Tracers%20to%20Represent%20the%20Residence%20Time%20Distribution%20of%20Fluidized%20Catalytic%20Cracking%20Particles&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Lu,%20Liqiang&rft.aucorp=National%20Energy%20Technology%20Laboratory%20(NETL),%20Pittsburgh,%20PA,%20Morgantown,%20WV%20(United%20States)&rft.date=2017-11-22&rft.volume=56&rft.issue=46&rft.spage=13642&rft.epage=13653&rft.pages=13642-13653&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.7b03773&rft_dat=%3Cacs_osti_%3Eb63200098%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |