Numerical Investigation of the Ability of Salt Tracers to Represent the Residence Time Distribution of Fluidized Catalytic Cracking Particles

For a long time, salt tracers have been used to measure the residence time distribution (RTD) of fluidized catalytic cracking (FCC) particles. However, due to limitations in experimental measurements and simulation methods, the ability of salt tracers to faithfully represent RTDs has never been dire...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2017-11, Vol.56 (46), p.13642-13653
Hauptverfasser: Lu, Liqiang, Gao, Xi, Li, Tingwen, Benyahia, Sofiane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a long time, salt tracers have been used to measure the residence time distribution (RTD) of fluidized catalytic cracking (FCC) particles. However, due to limitations in experimental measurements and simulation methods, the ability of salt tracers to faithfully represent RTDs has never been directly investigated. Our current simulation results using coarse-grained computational fluid dynamic coupled with discrete element method (CFD-DEM) with filtered drag models show that the residence time of salt tracers with the same terminal velocity as FCC particles is slightly larger than that of FCC particles. This research also demonstrates the ability of filtered drag models to predict the correct RTD curve for FCC particles while the homogeneous drag model may only be used in the dilute riser flow of Geldart type B particles. Thus, the RTD of large-scale reactors can be efficiently investigated with our proposed numerical method as well as by using the old-fashioned salt tracer technology.
ISSN:0888-5885
1520-5045
DOI:10.1021/acs.iecr.7b03773